Skip to main content

Advertisement

Log in

A double-edged sword: role of apoptosis repressor with caspase recruitment domain (ARC) in tumorigenesis and ischaemia/reperfusion (I/R) injury

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apoptosis repressor with caspase recruitment domain (ARC) acts as a potent and multifunctional inhibitor of apoptosis, which is mainly expressed in postmitotic cells, including cardiomyocytes. ARC is special for its N-terminal caspase recruitment domain and caspase recruitment domain. Due to the powerful inhibition of apoptosis, ARC is mainly reported to act as a cardioprotective factor during ischaemia‒reperfusion (I/R) injury, preventing cardiomyocytes from being devastated by various catastrophes, including oxidative stress, calcium overload, and mitochondrial dysfunction in the circulatory system. However, recent studies have found that ARC also plays a potential regulatory role in tumorigenesis especially in colorectal cancer and renal cell carcinomas, through multiple apoptosis-associated pathways, which remains to be explored in further studies. Therefore, ARC regulates the body and maintains the balance of physiological activities with its interesting duplex. This review summarizes the current research progress of ARC in the field of tumorigenesis and ischaemia/reperfusion injury, to provide overall research status and new possibilities for researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 3
Fig. 2

Similar content being viewed by others

Data availability

The data that support the fndings of this study are available from the corresponding author upon reasonable request.

References

  1. Yaacoub K, Pedeux R, Tarte K, Guillaudeux T (2016) Role of the tumor microenvironment in regulating apoptosis and cancer progression. Cancer Lett 378:150–159. https://doi.org/10.1016/j.canlet.2016.05.012

    Article  CAS  PubMed  Google Scholar 

  2. Chen Y, Lin JS (2017) The application of aptamer in apoptosis. Biochimie 132:1–8. https://doi.org/10.1016/j.biochi.2016.10.008

    Article  CAS  PubMed  Google Scholar 

  3. Zhang YQ, Herman B (2006) ARC protects rat cardiomyocytes against oxidative stress through inhibition of caspase-2 mediated mitochondrial pathway. J Cell Biochem 99:575–588. https://doi.org/10.1002/jcb.20946

    Article  CAS  PubMed  Google Scholar 

  4. Koseki T, Inohara N, Chen S, Núñez G (1998) ARC, an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases. Proc Natl Acad Sci U S A 95:5156–5160. https://doi.org/10.1073/pnas.95.9.5156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hunter AL, Zhang J, Chen SC et al (2007) Apoptosis repressor with caspase recruitment domain (ARC) inhibits myogenic differentiation. FEBS Lett 581:879–884. https://doi.org/10.1016/j.febslet.2007.01.050

    Article  CAS  PubMed  Google Scholar 

  6. Templin AT, Samarasekera T, Meier DT et al (2017) Apoptosis Repressor with Caspase Recruitment Domain ameliorates Amyloid-Induced β-Cell apoptosis and JNK pathway activation. Diabetes 66:2636–2645. https://doi.org/10.2337/db16-1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Quadrilatero J, Bloemberg D (2010) Apoptosis repressor with caspase recruitment domain is dramatically reduced in cardiac, skeletal, and vascular smooth muscle during hypertension. Biochem Biophys Res Commun 391:1437–1442. https://doi.org/10.1016/j.bbrc.2009.12.084

    Article  CAS  PubMed  Google Scholar 

  8. Engidawork E, Gulesserian T, Yoo BC, Cairns N, Lubec G (2001) Alteration of caspases and apoptosis-related proteins in brains of patients with Alzheimer’s disease. Biochem Biophys Res Commun 281:84–93. https://doi.org/10.1006/bbrc.2001.4306

    Article  CAS  PubMed  Google Scholar 

  9. Ha HJ, Park HH (2017) Molecular basis for the effect of the L31F mutation on CARD function in ARC. FEBS Lett 591:2919–2928. https://doi.org/10.1002/1873-3468.12783

    Article  CAS  PubMed  Google Scholar 

  10. Wu L, Nam YJ, Kung G, Crow MT, Kitsis RN (2010) Induction of the apoptosis inhibitor ARC by ras in human cancers. J Biol Chem 285:19235–19245. https://doi.org/10.1074/jbc.M110.114892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pyo JO, Nah J, Kim HJ et al (2008) Protection of cardiomyocytes from ischemic/hypoxic cell death via Drbp1 and pMe2GlyDH in cardio-specific ARC transgenic mice. J Biol Chem 283:30707–30714. https://doi.org/10.1074/jbc.M804209200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Braunwald E, Kloner RA (1985) Myocardial reperfusion: a double-edged sword? J Clin Invest 76:1713–1719. https://doi.org/10.1172/JCI112160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Donath S, Li P, Willenbockel C et al (2006) Apoptosis repressor with caspase recruitment domain is required for cardioprotection in response to biomechanical and ischemic stress. Circulation 113:1203–1212. https://doi.org/10.1161/CIRCULATIONAHA.105.576785

    Article  CAS  PubMed  Google Scholar 

  14. Stoss O, Schwaiger FW, Cooper TA, Stamm S (1999) Alternative splicing determines the intracellular localization of the novel nuclear protein Nop30 and its interaction with the splicing factor SRp30c. J Biol Chem 274:10951–10962. https://doi.org/10.1074/jbc.274.16.10951

    Article  CAS  PubMed  Google Scholar 

  15. Kim SH, Park HH (2015) Crystallization and preliminary X-ray crystallographic analysis of the CARD domain of apoptosis repressor with CARD (ARC). Acta Crystallogr F Struct Biol Commun 71:82–85. https://doi.org/10.1107/s2053230x14026211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nam YJ, Mani K, Ashton AW et al (2004) Inhibition of both the extrinsic and intrinsic death pathways through nonhomotypic death-fold interactions. Mol Cell 15:901–912. https://doi.org/10.1016/j.molcel.2004.08.020

    Article  CAS  PubMed  Google Scholar 

  17. Wang M, Qanungo S, Crow MT, Watanabe M, Nieminen AL (2005) Apoptosis repressor with caspase recruitment domain (ARC) is expressed in cancer cells and localizes to nuclei. FEBS Lett 579:2411–2415. https://doi.org/10.1016/j.febslet.2005.03.040

    Article  CAS  PubMed  Google Scholar 

  18. He Q, Li Z, Yin J et al (2021) Prognostic significance of autophagy-relevant gene markers in Colorectal Cancer. Front Oncol 11:566539. https://doi.org/10.3389/fonc.2021.566539

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang Z, Wang L, Wang Q et al (2020) Molecular characterization and clinical relevance of RNA binding proteins in Colorectal Cancer. Front Genet 11:580149. https://doi.org/10.3389/fgene.2020.580149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Watanabe T, Kobunai T, Yamamoto Y et al (2011) Predicting ulcerative colitis-associated colorectal cancer using reverse-transcription polymerase chain reaction analysis. Clin Colorectal Cancer 10:134–141. https://doi.org/10.1016/j.clcc.2011.03.011

    Article  CAS  PubMed  Google Scholar 

  21. Mercier I, Vuolo M, Jasmin JF et al (2008) ARC (apoptosis repressor with caspase recruitment domain) is a novel marker of human colon cancer. Cell Cycle 7:1640–1647. https://doi.org/10.4161/cc.7.11.5979

    Article  CAS  PubMed  Google Scholar 

  22. Bonadona V, Bonaiti B, Olschwang S et al (2011) Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA 305:2304–2310. https://doi.org/10.1001/jama.2011.743

    Article  CAS  PubMed  Google Scholar 

  23. Salem ME, Bodor JN, Puccini A et al (2020) Relationship between MLH1, PMS2, MSH2 and MSH6 gene-specific alterations and tumor mutational burden in 1057 microsatellite instability-high solid tumors. Int J Cancer 147:2948–2956. https://doi.org/10.1002/ijc.33115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Toth C, Meinrath J, Herpel E et al (2016) Expression of the apoptosis repressor with caspase recruitment domain (ARC) in liver metastasis of colorectal cancer and its correlation with DNA mismatch repair proteins and p53. J Cancer Res Clin Oncol 142:927–935. https://doi.org/10.1007/s00432-015-2102-3

    Article  CAS  PubMed  Google Scholar 

  25. Loo LW, Cheng I, Tiirikainen M et al (2012) cis-expression QTL analysis of established colorectal cancer risk variants in colon tumors and adjacent normal tissue. PLoS ONE 7:e30477. https://doi.org/10.1371/journal.pone.0030477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang Q, Zhang T, Chang X et al (2020) ARC is a critical Protector against Inflammatory Bowel Disease (IBD) and IBD-Associated Colorectal Tumorigenesis. Cancer Res 80:4158–4171. https://doi.org/10.1158/0008-5472.Can-20-0469

    Article  CAS  PubMed  Google Scholar 

  27. Ao JE, Kuang LH, Zhou Y, Zhao R, Yang CM (2012) Hypoxia-inducible factor 1 regulated ARC expression mediated hypoxia induced inactivation of the intrinsic death pathway in p53 deficient human colon cancer cells. Biochem Biophys Res Commun 420:913–917. https://doi.org/10.1016/j.bbrc.2012.03.101

    Article  CAS  PubMed  Google Scholar 

  28. Obaidi I, Blanco Fernandez A, McMorrow T (2022) Curcumin Sensitises cancerous kidney cells to TRAIL Induced apoptosis via Let-7 C mediated Deregulation of Cell Cycle Proteins and Cellular Metabolism. Int J Mol Sci 23. https://doi.org/10.3390/ijms23179569

  29. Yin J, Ni B, Liao WG, Gao YQ (2018) Hypoxia-induced apoptosis of mouse spermatocytes is mediated by HIF-1alpha through a death receptor pathway and a mitochondrial pathway. J Cell Physiol 233:1146–1155. https://doi.org/10.1002/jcp.25974

    Article  CAS  PubMed  Google Scholar 

  30. Huang W, Su G, Huang X et al (2019) Long noncoding RNA PCAT6 inhibits colon cancer cell apoptosis by regulating anti-apoptotic protein ARC expression via EZH2. Cell Cycle 18:69–83. https://doi.org/10.1080/15384101.2018.1558872

    Article  CAS  PubMed  Google Scholar 

  31. Zhang F, Yu S, Wu P, Liu L, Wei D, Li S (2021) Discovery and construction of prognostic model for clear cell renal cell carcinoma based on single-cell and bulk transcriptome analysis. Transl Androl Urol 10:3540–3554. https://doi.org/10.21037/tau-21-581

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rajandram R, Pat BK, Li J, Johnson DW, Gobe GC (2009) Expression of apoptotic tumour necrosis factor receptor-associated factor, caspase recruitment domain and cell death-inducing DFF-45 effector genes in therapy-treated renal cell carcinoma. Nephrol (Carlton) 14:205–212. https://doi.org/10.1111/j.1440-1797.2008.01027.x

    Article  CAS  Google Scholar 

  33. Razorenova OV, Castellini L, Colavitti R et al (2014) The apoptosis repressor with a CARD domain (ARC) gene is a direct hypoxia-inducible factor 1 target gene and promotes survival and proliferation of VHL-deficient renal cancer cells. Mol Cell Biol 34:739–751. https://doi.org/10.1128/MCB.00644-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Heikaus S, Kempf T, Mahotka C, Gabbert HE, Ramp U (2008) Caspase-8 and its inhibitors in RCCs in vivo: the prominent role of ARC. Apoptosis 13:938–949. https://doi.org/10.1007/s10495-008-0225-6

    Article  CAS  PubMed  Google Scholar 

  35. Toth C, Funke S, Nitsche V et al (2017) The role of apoptosis repressor with a CARD domain (ARC) in the therapeutic resistance of renal cell carcinoma (RCC): the crucial role of ARC in the inhibition of extrinsic and intrinsic apoptotic signalling. Cell Commun Signal 15:16. https://doi.org/10.1186/s12964-017-0170-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li Q, Wang JX, He YQ et al (2014) MicroRNA-185 regulates chemotherapeutic sensitivity in gastric cancer by targeting apoptosis repressor with caspase recruitment domain. Cell Death Dis 5:e1197. https://doi.org/10.1038/cddis.2014.148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yu J, Liang Q, Wang J et al (2017) REC8 functions as a tumor suppressor and is epigenetically downregulated in gastric cancer, especially in EBV-positive subtype. Oncogene 36:182–193. https://doi.org/10.1038/onc.2016.187

    Article  CAS  PubMed  Google Scholar 

  38. Ma T, Su Z, Chen L et al (2012) Human papillomavirus type 18 E6 and E7 genes integrate into human hepatoma derived cell line hep G2. PLoS ONE 7:e37964. https://doi.org/10.1371/journal.pone.0037964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Carter BZ, Qiu YH, Zhang N et al (2011) Expression of ARC (apoptosis repressor with caspase recruitment domain), an antiapoptotic protein, is strongly prognostic in AML. Blood 117:780–787. https://doi.org/10.1182/blood-2010-04-280503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mak PY, Mak DH, Mu H et al (2014) Apoptosis repressor with caspase recruitment domain is regulated by MAPK/PI3K and confers drug resistance and survival advantage to AML. Apoptosis 19:698–707. https://doi.org/10.1007/s10495-013-0954-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mak PY, Mak DH, Ruvolo V et al (2014) Apoptosis repressor with caspase recruitment domain modulates second mitochondrial-derived activator of caspases mimetic-induced cell death through BIRC2/MAP3K14 signalling in acute myeloid leukaemia. Br J Haematol 167:376–384. https://doi.org/10.1111/bjh.13054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Carter BZ, Mak PY, Wang X et al (2019) An ARC-Regulated IL1beta/Cox-2/PGE2/beta-Catenin/ARC circuit controls leukemia-microenvironment interactions and confers Drug Resistance in AML. Cancer Res 79:1165–1177. https://doi.org/10.1158/0008-5472.CAN-18-0921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Medina-Ramirez CM, Goswami S, Smirnova T et al (2011) Apoptosis inhibitor ARC promotes breast tumorigenesis, metastasis, and chemoresistance. Cancer Res 71:7705–7715. https://doi.org/10.1158/0008-5472.Can-11-2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stanley RF, Piszczatowski RT, Bartholdy B et al (2017) A myeloid tumor suppressor role for NOL3. J Exp Med 214:753–771. https://doi.org/10.1084/jem.20162089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dowds TA, Sabban EL (2001) Endogenous and exogenous ARC in serum withdrawal mediated PC12 cell apoptosis: a new pro-apoptotic role for ARC. Cell Death Differ 8:640–648. https://doi.org/10.1038/sj.cdd.4400855

    Article  CAS  PubMed  Google Scholar 

  46. Wang Q, Li A, Wang H, Wang J (2012) Knockdown of apoptosis repressor with caspase recruitment domain (ARC) increases the sensitivity of human glioma cell line U251MG to VM-26. Int J Clin Exp Pathol 5:555–561

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kurian GA, Rajagopal R, Vedantham S, Rajesh M (2016) The role of oxidative stress in Myocardial Ischemia and Reperfusion Injury and Remodeling: Revisited. Oxid Med Cell Longev 2016:1656450. https://doi.org/10.1155/2016/1656450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vanden Hoek TL, Li C, Shao Z, Schumacker PT, Becker LB (1997) Significant levels of oxidants are generated by isolated cardiomyocytes during ischemia prior to reperfusion. J Mol Cell Cardiol 29:2571–2583. https://doi.org/10.1006/jmcc.1997.0497

    Article  CAS  PubMed  Google Scholar 

  49. Berg K, Jynge P, Bjerve K, Skarra S, Basu S, Wiseth R (2005) Oxidative stress and inflammatory response during and following coronary interventions for acute myocardial infarction. Free Radic Res 39:629–636. https://doi.org/10.1080/10715760400028027

    Article  CAS  PubMed  Google Scholar 

  50. Zhou H, Wang J, Zhu P, Hu S, Ren J (2018) Ripk3 regulates cardiac microvascular reperfusion injury: the role of IP3R-dependent calcium overload, XO-mediated oxidative stress and F-action/filopodia-based cellular migration. Cell Signal 45:12–22. https://doi.org/10.1016/j.cellsig.2018.01.020

    Article  CAS  PubMed  Google Scholar 

  51. Du J, Li Y, Zhao W (2020) Autophagy and myocardial ischemia. Adv Exp Med Biol 1207:217–222. https://doi.org/10.1007/978-981-15-4272-5_15

    Article  CAS  PubMed  Google Scholar 

  52. Bugger H, Pfeil K (2020) Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochim Biophys Acta Mol Basis Dis 1866:165768. https://doi.org/10.1016/j.bbadis.2020.165768

    Article  CAS  PubMed  Google Scholar 

  53. Zhang J, Zheng X, Wang P, Wang J, Ding W (2021) Role of apoptosis repressor with caspase recruitment domain (ARC) in cell death and cardiovascular disease. Apoptosis 26:24–37. https://doi.org/10.1007/s10495-020-01653-x

    Article  CAS  PubMed  Google Scholar 

  54. Liu M, Yu T, Li M et al (2020) Apoptosis repressor with caspase recruitment domain promotes cell proliferation and phenotypic modulation through 14-3-3ε/YAP signaling in vascular smooth muscle cells. J Mol Cell Cardiol 147:35–48. https://doi.org/10.1016/j.yjmcc.2020.08.003

    Article  CAS  PubMed  Google Scholar 

  55. Zhang J, Wu Z, Guan M, Lu H, Mo X (2017) Inhibition of ARC promoting the apoptosis of rat pulmonary arterial smooth muscle cells after serum deprivation in vitro. Mol Med Rep 16:3869–3876. https://doi.org/10.3892/mmr.2017.7047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zaiman AL, Damico R, Thoms-Chesley A et al (2011) A critical role for the protein apoptosis repressor with caspase recruitment domain in hypoxia-induced pulmonary hypertension. Circulation 124:2533–2542. https://doi.org/10.1161/circulationaha.111.034512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu L, Xi Z, Guo R et al (2013) Exogenous ARC down-regulates caspase-3 expression and inhibits apoptosis of broiler chicken cardiomyocytes exposed to hydrogen peroxide. Avian Pathol 42:32–37. https://doi.org/10.1080/03079457.2012.757289

    Article  CAS  PubMed  Google Scholar 

  58. Gustafsson AB, Sayen MR, Williams SD, Crow MT, Gottlieb RA (2002) TAT protein transduction into isolated perfused hearts: TAT-apoptosis repressor with caspase recruitment domain is cardioprotective. Circulation 106:735–739. https://doi.org/10.1161/01.cir.0000023943.50821.f7

    Article  CAS  PubMed  Google Scholar 

  59. Yaglom JA, Ekhterae D, Gabai VL, Sherman MY (2003) Regulation of necrosis of H9c2 myogenic cells upon transient energy deprivation. Rapid deenergization of mitochondria precedes necrosis and is controlled by reactive oxygen species, stress kinase JNK, HSP72 and ARC. J Biol Chem 278:50483–50496. https://doi.org/10.1074/jbc.M306903200

    Article  CAS  PubMed  Google Scholar 

  60. Gustafsson AB, Tsai JG, Logue SE, Crow MT, Gottlieb RA (2004) Apoptosis repressor with caspase recruitment domain protects against cell death by interfering with bax activation. J Biol Chem 279:21233–21238. https://doi.org/10.1074/jbc.M400695200

    Article  CAS  PubMed  Google Scholar 

  61. Li J, Li Y, Qin D, von Harsdorf R, Li P (2010) Mitochondrial fission leads to Smac/DIABLO release quenched by ARC. Apoptosis 15:1187–1196. https://doi.org/10.1007/s10495-010-0514-8

    Article  CAS  PubMed  Google Scholar 

  62. Wang JX, Li Q, Li PF (2009) Apoptosis repressor with caspase recruitment domain contributes to chemotherapy resistance by abolishing mitochondrial fission mediated by dynamin-related protein-1. Cancer Res 69:492–500. https://doi.org/10.1158/0008-5472.Can-08-2962

    Article  CAS  PubMed  Google Scholar 

  63. Tan WQ, Wang JX, Lin ZQ, Li YR, Lin Y, Li PF (2008) Novel cardiac apoptotic pathway: the dephosphorylation of apoptosis repressor with caspase recruitment domain by calcineurin. Circulation 118:2268–2276. https://doi.org/10.1161/circulationaha.107.750869

    Article  CAS  PubMed  Google Scholar 

  64. Lu X, Moore PG, Liu H, Schaefer S (2011) Phosphorylation of ARC is a critical element in the antiapoptotic effect of anesthetic preconditioning. Anesth Analg 112:525–531. https://doi.org/10.1213/ANE.0b013e318205689b

    Article  CAS  PubMed  Google Scholar 

  65. Yingjie K, Haihong Y, Lingwei C et al (2019) Apoptosis repressor with caspase recruitment domain deficiency accelerates ischemia/reperfusion (I/R)-induced acute kidney injury by suppressing inflammation and apoptosis: the role of AKT/mTOR signaling. Biomed Pharmacother 112:108681. https://doi.org/10.1016/j.biopha.2019.108681

    Article  CAS  PubMed  Google Scholar 

  66. Yaniv G, Shilkrut M, Lotan R, Berke G, Larisch S, Binah O (2002) Hypoxia predisposes neonatal rat ventricular myocytes to apoptosis induced by activation of the Fas (CD95/Apo-1) receptor: Fas activation and apoptosis in hypoxic myocytes. Cardiovasc Res 54:611–623. https://doi.org/10.1016/s0008-6363(02)00264-x

    Article  CAS  PubMed  Google Scholar 

  67. Ekhterae D, Lin Z, Lundberg MS, Crow MT, Brosius FC 3, Núñez G (1999) ARC inhibits cytochrome c release from mitochondria and protects against hypoxia-induced apoptosis in heart-derived H9c2 cells. Circ Res 85:e70–77. https://doi.org/10.1161/01.res.85.12.e70

    Article  CAS  PubMed  Google Scholar 

  68. Li Y, Ge X, Liu X (2009) The cardioprotective effect of postconditioning is mediated by ARC through inhibiting mitochondrial apoptotic pathway. Apoptosis 14:164–172. https://doi.org/10.1007/s10495-008-0296-4

    Article  CAS  PubMed  Google Scholar 

  69. Li YZ, Liu XH, Zhu XM, Cai LR (2007) ARC contributes to the inhibitory effect of preconditioning on cardiomyocyte apoptosis. Apoptosis 12:1589–1595. https://doi.org/10.1007/s10495-007-0094-4

    Article  CAS  PubMed  Google Scholar 

  70. Foo RS, Chan LK, Kitsis RN, Bennett MR (2007) Ubiquitination and degradation of the anti-apoptotic protein ARC by MDM2. J Biol Chem 282:5529–5535. https://doi.org/10.1074/jbc.M609046200

    Article  CAS  PubMed  Google Scholar 

  71. Lyn D, Bao S, Bennett NA, Liu X, Emmett NL (2002) Ischemia elicits a coordinated expression of pro-survival proteins in mouse myocardium. ScientificWorldJournal 2:997–1003. https://doi.org/10.1100/tsw.2002.192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xie F, Mei ZS, Wang X et al (2020) Loss of nuclear ARC contributes to the development of cardiac hypertrophy in rats. Acta Physiol (Oxf) 228:e13337. https://doi.org/10.1111/apha.13337

    Article  CAS  PubMed  Google Scholar 

  73. Siu PM, Bryner RW, Murlasits Z, Alway SE (2005) Response of XIAP, ARC, and FLIP apoptotic suppressors to 8 wk of treadmill running in rat heart and skeletal muscle. J Appl Physiol (1985) 99:204–209. https://doi.org/10.1152/japplphysiol.00084.2005

    Article  CAS  PubMed  Google Scholar 

  74. Lu D, Liu J, Jiao J et al (2013) Transcription factor Foxo3a prevents apoptosis by regulating calcium through the apoptosis repressor with caspase recruitment domain. J Biol Chem 288:8491–8504. https://doi.org/10.1074/jbc.M112.442061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li Y, Liu X, Rong F (2011) PUMA mediates the apoptotic signal of hypoxia/reoxygenation in cardiomyocytes through mitochondrial pathway. Shock 35:579–584. https://doi.org/10.1097/SHK.0b013e318211601a

    Article  CAS  PubMed  Google Scholar 

  76. Li YZ, Lu DY, Tan WQ, Wang JX, Li PF (2008) p53 initiates apoptosis by transcriptionally targeting the antiapoptotic protein ARC. Mol Cell Biol 28:564–574. https://doi.org/10.1128/MCB.00738-07

    Article  CAS  PubMed  Google Scholar 

  77. Xu T, Ding W, Ao X et al (2019) ARC regulates programmed necrosis and myocardial ischemia/reperfusion injury through the inhibition of mPTP opening. Redox Biol 20:414–426. https://doi.org/10.1016/j.redox.2018.10.023

    Article  CAS  PubMed  Google Scholar 

  78. Nam YJ, Mani K, Wu L et al (2007) The apoptosis inhibitor ARC undergoes ubiquitin-proteasomal-mediated degradation in response to death stimuli: identification of a degradation-resistant mutant. J Biol Chem 282:5522–5528. https://doi.org/10.1074/jbc.M609186200

    Article  CAS  PubMed  Google Scholar 

  79. Koekemoer AL, Chong NW, Goodall AH, Samani NJ (2009) Myocyte stress 1 plays an important role in cellular hypertrophy and protection against apoptosis. FEBS Lett 583:2964–2967. https://doi.org/10.1016/j.febslet.2009.08.011

    Article  CAS  PubMed  Google Scholar 

  80. Yao X, Tan G, He C et al (2012) Hydrogen sulfide protects cardiomyocytes from myocardial ischemia-reperfusion injury by enhancing phosphorylation of apoptosis repressor with caspase recruitment domain. Tohoku J Exp Med 226:275–285. https://doi.org/10.1620/tjem.226.275

    Article  CAS  PubMed  Google Scholar 

  81. Xu Y, Lv X, Cai R et al (2022) Possible implication of mir-142-3p in coronary microembolization induced myocardial injury via ATXN1L/HDAC3/NOL3 axis. J Mol Med (Berl) 100:763–780. https://doi.org/10.1007/s00109-022-02198-z

    Article  CAS  PubMed  Google Scholar 

  82. Li Q, Yang J, Zhang J et al (2020) Inhibition of microRNA-327 ameliorates ischemia/reperfusion injury-induced cardiomyocytes apoptosis through targeting apoptosis repressor with caspase recruitment domain. J Cell Physiol 235:3753–3767. https://doi.org/10.1002/jcp.29270

    Article  CAS  PubMed  Google Scholar 

  83. Chen R, Yang M (2022) Melatonin inhibits OGD/R-Induced H9c2 cardiomyocyte pyroptosis via regulation of MT2/miR-155/FOXO3a/ARC Axis. Int Heart J 63:327–337. https://doi.org/10.1536/ihj.21-571

    Article  CAS  PubMed  Google Scholar 

  84. Liu M, Yu T, Li M et al (2020) Apoptosis repressor with caspase recruitment domain promotes cell proliferation and phenotypic modulation through 14-3-3epsilon/YAP signaling in vascular smooth muscle cells. J Mol Cell Cardiol 147:35–48. https://doi.org/10.1016/j.yjmcc.2020.08.003

    Article  CAS  PubMed  Google Scholar 

  85. Foo RS, Nam YJ, Ostreicher MJ et al (2007) Regulation of p53 tetramerization and nuclear export by ARC. Proc Natl Acad Sci U S A 104:20826–20831. https://doi.org/10.1073/pnas.0710017104

    Article  PubMed  PubMed Central  Google Scholar 

  86. Borges GSM, Lages EB, Sicard P, Ferreira LAM, Richard S (2021) Nanomedicine in Oncocardiology: Contribution and Perspectives of Preclinical Studies. Front Cardiovasc Med 8:690533. https://doi.org/10.3389/fcvm.2021.690533

    Article  PubMed  PubMed Central  Google Scholar 

  87. Herrmann J, Loprinzi C, Ruddy K (2018) Building a Cardio-Onco-Hematology Program. Curr Oncol Rep 20:81. https://doi.org/10.1007/s11912-018-0725-7

    Article  CAS  PubMed  Google Scholar 

  88. Miao JX, Gao S, Fan L, Cao F (2019) Progress in prevention and treatment of myocardial injury induced by cancer therapy. Chin Med J (Engl) 132:2724–2728. https://doi.org/10.1097/CM9.0000000000000498

    Article  CAS  PubMed  Google Scholar 

  89. Wang J, Feng C, He Y et al (2015) Phosphorylation of apoptosis repressor with caspase recruitment domain by protein kinase CK2 contributes to chemotherapy resistance by inhibiting doxorubicin induced apoptosis. Oncotarget 6:27700–27713. https://doi.org/10.18632/oncotarget.4392

    Article  PubMed  PubMed Central  Google Scholar 

  90. Yu Z, Li Q, An Y et al (2019) Role of apoptosis repressor with caspase recruitment domain (ARC) in cancer. Oncol Lett 18:5691–5698. https://doi.org/10.3892/ol.2019.10981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Carter BZ, Mak PY, Chen Y et al (2016) Anti-apoptotic ARC protein confers chemoresistance by controlling leukemia-microenvironment interactions through a NFkappaB/IL1beta signaling network. Oncotarget 7:20054–20067. https://doi.org/10.18632/oncotarget.7911

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (NSFC. 31960156, 31660338, 32270848); Collaborative Innovation Center of Chinese Ministry of Education (2020-39); Science and Technology Support Program of Guizhou Province (QKH[2020]4Y192); Science and Technology Program of Guizhou Province (QKH[2019]5406, QKH-[2021]111); Science and Technology Fund of Guizhou Provincial Health Commission (gzwkj2022-019).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Kun Liu was responsible for article design and manuscript writing. Dongfeng Lan was involved in the design of the images. Zhixu He, Jidong Zhang and Jun Tan was involved in the design of the study, revise the manuscript, and funding application. All authors read and approved the final manuscript. All authors declared no competing interests. The first draft of the manuscript was written by Kun Liu and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jun Tan or Jidong Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Lan, D., Li, C. et al. A double-edged sword: role of apoptosis repressor with caspase recruitment domain (ARC) in tumorigenesis and ischaemia/reperfusion (I/R) injury. Apoptosis 28, 313–325 (2023). https://doi.org/10.1007/s10495-022-01802-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-022-01802-4

Keywords

Navigation