Skip to main content
Log in

Hypobaric hypoxia triggers pyroptosis in the retina via NLRP3 inflammasome activation

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Hypobaric hypoxia initiates multiple impairment to the retina and is the major cause contributing to retinal function deficits such as high altitude retinopathy. However, the underlying molecular mechanism has not been clearly defined so far and remains to be clarified. In the present study, we have undertaken an approach to mimic 5000 m altitude with a low-pressure oxygen cabin and evaluated if pyroptosis is involved in the mechanisms by which hypobaric hypoxia triggers retinal impairment. We also used Radix Astragali seu Hedysari Compound (RAHC) to determine whether RAHC is capable of exerting protective effects on the hypobaric hypoxia-induced retinal dysfunction. We found that hypobaric hypoxia stress activated inflammasome complex through increasing NOD-like receptor family pyrin domain-containing 3 (NLRP3), caspase-1, and apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) protein levels. The protein expression of gasdermin-D, a master executor of pyroptosis, and NADPH oxidase 4, which is regarded as a main generator of reactive oxygen species (ROS), also elevated upon hypobaric hypoxia exposure. In addition, hypobaric hypoxia induced a significant increase in pro-inflammatory cytokines expression including interleukin-1β and interleukin-18 in the rat retina. Our results indicate that hypobaric hypoxia initiates pyroptosis in the rat retina. RAHC attenuates hypobaric hypoxia-triggered retinal pyroptosis via inhibiting NLRP3 inflammasome activation and release of pro-inflammatory cytokines. The involvement of pyroptosis pathway in the retina in response to hypobaric hypoxia supports a novel insight to clarify the pathogenesis of hypobaric hypoxia-induced retinal impairment and provides a feasibility of inflammasome modulation for preserving retinal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ASC:

Apoptosis-associated speck-like protein containing a caspase activation and recruitment domain

ELISA:

Enzyme-linked immunosorbent assay

GCL:

Ganglion cell layer

GSDMD:

Gasdermin-D

HAR:

High-altitude retinopathy

HIF-1:

Hypoxia-inducible factor-1

HO-1:

Heme oxygenase-1

HRP:

Horseradish peroxidase

INL:

Inner nuclear layer

IPL:

Inner plexiform layer

IL-18:

Interleukin 18

IL-1β:

Interleukin 1-beta

NLRP3:

NOD-like receptor family pyrin domain-containing 3

NOX4:

NADPH oxidase 4

Nrf2:

Erythroid 2-related factor 2

OPL:

Outer plexiform layer

ONL:

Outer nuclear layer

PL:

Photoreceptor layer

RAHC:

Radix Astragali seu Hedysari Compound

ROS:

Reactive oxygen species

Trx:

Thioredoxin

References

  1. Schoene RB (2008) Illnesses at high altitude. Chest 134(2):402–416

    Article  PubMed  Google Scholar 

  2. Irarrázaval S, Allard C, Campodónico J, Pérez D, Strobel P, Vásquez L, Echeverría G, Leighton F (2017) Oxidative stress in acute hypobaric hypoxia. High Alt Med Biol 18(2):128–134

    Article  PubMed  Google Scholar 

  3. Willmann G, Schatz A, Gekeler F, Schultheiss M (2018) Estimated incidence of high altitude retinal hemorrhages. Graefes Arch Clin Exp Ophthalmol 256(1):231–232

    Article  PubMed  Google Scholar 

  4. Willman G, Fischer MD, Schatz A, Schomme K, Gekeler F (2013) Retinal vessel leakage at high altitude. JAMA 309(21):2210–2212

    Article  Google Scholar 

  5. Ho TY, Kao WF, Lee SM (2011) High-altitude retinopathy after climbing Mount Aconcagua in a group of experienced climbers. Retina 31(8):1650–1655

    Article  PubMed  Google Scholar 

  6. McFadden DM, Houston CM, Sutton JR, Powles AC, Gray GW, Roberts RS (1981) High-altitude retinopathy. JAMA 245(6):581–586

    Article  CAS  PubMed  Google Scholar 

  7. Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7(2):99–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vande Walle L, Lamkanfi M (2016) Pyroptosis. Curr Biol 26(13):R568–R572

    Article  CAS  PubMed  Google Scholar 

  9. den Hartigh AB, Fink SL (2018) Detection of inflammasome activation and pyroptotic cell death in murine bone marrow-derived macrophages. J Vis Exp 21(135):57463

    Google Scholar 

  10. Lee C, Do HTT, Her J, Kim Y, Seo D, Rhee I (2019) Inflammasome as a promising therapeutic target for cancer. Life Sci 231:116593

    Article  CAS  PubMed  Google Scholar 

  11. Man SM, Karki R, Kanneganti T (2017) Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev 277(1):61–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dong Z, Pan K, Pan J, Peng Q, Wang Y (2018) The possibility and molecular mechanisms of cell pyroptosis after cerebral ischemia. Neurosci Bull 34(6):1131–1136

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kovacs SB, Miao EA (2017) Gasdermins: effectors of pyroptosis. Trends Cell Biol 27(9):673–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tan MS, Tan L, Jiang T, Zhu XC, Wang HF, Jia CD, Yu JT (2014) Amyloid-beta induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer’s disease. Cell Death Dis 5(8):e1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Adamczak SE, de Rivero Vaccari JP, Dale G, Brand FJ, Nonner D, Bullock MR, Dahl GP, Dietrich WD, Keane RW (2014) Pyroptotic neuronal cell death mediated by the AIM2 inflammasome. J Cereb Blood Flow Metab 34(4):621–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alfonso-Loeches S, Urena-Peralta JR, Morillo-Bargues MJ, Oliver-De La Cruz J, Guerri C (2014) Role of mitochondria ROS generation in ethanol-induced NLRP3 inflammasome activation and cell death in astroglial cells. Front Cell Neurosci 8:216

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chi W, Li F, Chen H, Wang Y, Zhu Y, Yang X, Zhu J, Wu F, Ouyang H, Ge J, Weinreb RN, Zhang K, Zhuo Y (2014) Caspase-8 promotes NLRP1/NLRP3 inflammasome activation and IL-1β production in acute glaucoma. Proc Natl Acad Sci USA 111(30):11181–11186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Albalawi F, Lu W, Beckel JM, Lim JC, McCaughey SA, Mitchell CH (2017) The P2X7 receptor primes IL-1β and the NLRP3 inflammasome in astrocytes exposed to mechanical strain. Front Cell Neurosci 11:227

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yang WJ, Li DP, Li JK, Li MH, Chen YL, Zhang PZ (2009) Synergistic antioxidant activities of eight traditional Chinese herb pairs. Biol Pharm Bull 32(6):1021–1026

    Article  CAS  PubMed  Google Scholar 

  20. Lai PK, Chan JY, Wu SB, Cheng L, Ho GK, Lau CP, Kennelly EJ, Leung PC, Fung KP, Lau CB (2014) Anti-inflammatory activities of an active fraction isolated from the root of Astragalus membranaceus in RAW 264.7 macrophages. Phytother Res 28(3):395–404

    Article  CAS  PubMed  Google Scholar 

  21. Zhang S, Tang X, Tian J, Li C, Zhang G, Jiang W, Zhang Z (2011) Cardioprotective effect of sulphonated formononetin on acute myocardial infarction in rats. Basic Clin Pharmacol Toxicol 108(6):390–395

    Article  CAS  PubMed  Google Scholar 

  22. Pottérat O (2010) Goji (Lycium barbarum and L. chinense): phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Med 76(1):7–19

    Article  PubMed  Google Scholar 

  23. Yamada P, Nemoto M, Shigemori H, Yokota S, Isoda H (2011) Isolation of 5-(hydroxymethyl)furfuralfrom Lycium chinense and its inhibitory effect on the chemical mediator release by basophilic cells. Planta Med 77(5):434–440

    Article  CAS  PubMed  Google Scholar 

  24. Lee YM, Yoon H, Park HM, Song BC, Yeum KJ (2017) Implications of red Panax ginseng in oxidative stress associated chronic diseases. J Ginseng Res 41(2):113–119

    Article  PubMed  Google Scholar 

  25. Son YO, Kook SH, Lee JC (2017) Glycoproteins and polysaccharides are the main class of active constituents required for lymphocyte stimulation and antigen-specific immune response induction by traditional medicinal herbal plants. J Med Food 20(10):1011–1021

    Article  CAS  PubMed  Google Scholar 

  26. Yun TK (2001) Panax ginseng—a non-organ-specific cancer preventive? Lancet Oncol 2(1):49–55

    Article  CAS  PubMed  Google Scholar 

  27. Li C, Chen J, Lu B, Shi Z, Wang H, Zhang B, Zhao K, Qi W, Bao J, Wang Y (2014) Molecular switch role of Akt in Polygonatum odoratum lectin-induced apoptosis and autophagy in human non-small cell lung cancer A549 cells. PLoS ONE 9(7):e101526

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kim HJ, Kim P, Shin CY (2013) A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system. J Ginseng Res 37(1):8–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Manzanilla V, Kool A, Nguyen Nhat L, Van Nong H, Le Thi Thu H, de Boer HJ (2018) Phylogenomics and barcoding of Panax: toward the identification of ginseng species. BMC Evol Biol 18(1):44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun W, Meng K, Qi C, Yang X, Wang Y, Fan W, Yan Z, Zhao X, Liu J (2015) Immune-enhancing activity of polysaccharides isolated from Atractylodis macrocephalae Koidz. Carbohydr Polym 126:91–96

    Article  CAS  PubMed  Google Scholar 

  31. Xu D, Li B, Cao N, Li W, Tian Y, Huang Y (2017) The protective effects of polysaccharide of Atractylodes macrocephala Koidz (PAMK) on the chicken spleen under heat stress via antagonizing apoptosis and restoring the immune function. Oncotarget 8(4):70394–70405

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sun M, Zhou T, Zhou L, Chen Q, Yu Y, Yang H, Zhong K, Zhang X et al (2012) Formononetin protects neurons against hypoxia-induced cytotoxicity through upregulation of ADAM10 and sAβPPα. J Alzheimer’s Dis 28(4):795–808

    Article  CAS  Google Scholar 

  33. Xin XR, Dang H, Zhao XJ, Wang HH (2017) Effects of hypobaric hypoxia on rat retina and protective response of resveratrol to the stress. Int J Med Sci 14(10):943–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xin X, Li Y, Liu H (2020) Hesperidin ameliorates hypobaric hypoxia-induced retinal impairment through activation of Nrf2/HO-1 pathway and inhibition of apoptosis. Sci Rep 10(10):19426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. China Pharmacopoeia Committee (2019) The pharmacopoeia of the People’s Republic of China. China Medical Science Press, Beijing

    Google Scholar 

  36. Xu SY (2002) Pharmacological experimental methodology. People’s Medical Publishing House, Beijing

    Google Scholar 

  37. Dick MS, Sborgi L, Rühl S, Hiller S, Broz P (2016) ASC filament formation serves as a signal amplification mechanism for inflammasomes. Nat Commun 7:11929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ochoa CD, Wu RF, Terada LS (2018) ROS signaling and ER stress in cardiovascular disease. Mol Aspects Med 63:18–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fann DY, Lee SY, Manzanero S, Tang SC, Gelderblom M, Chunduri P, Bernreuther C, Glatzel M, Cheng YL, Thundyil J, Widiapradja A, Lok KZ, Foo SL, Wang YC, Li YI, Drummond GR, Basta M, Magnus T, Jo DG, Mattson MP, Sobey CG, Arumugam TV (2013) Intravenous immunoglobulin suppresses nlrp1 and nlrp3 inflammasome-mediated neuronal death in ischemic stroke. Cell Death Dis 4(9):e790

    Article  CAS  PubMed  Google Scholar 

  40. Liu D, Zeng X, Li X, Mehta JL, Wang X (2017) Role of nlrp3 inflammasome in the pathogenesis of cardiovascular diseases. Basic Res Cardiol 113(1):5

    Article  PubMed  Google Scholar 

  41. Mortezaee K, Khanlarkhani N, Beyer C, Zendedel A (2018) Inflammasome: its role in traumatic brain and spinal cord injury. J Cell Physiol 233(7):5160–5169

    Article  CAS  PubMed  Google Scholar 

  42. Hu B, Elinav E, Huber S, Booth CJ, Strowig T, Jin C, Eisenbarth SC, Flavell RA (2010) Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc Natl Acad Sci USA 107(50):21635–21640

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jorgensen I, Miao EA (2015) Pyroptotic cell death defends against intracellular pathogens. Immunol Rev 265(1):130–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shi J, Zha Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526(7575):660–665

    Article  CAS  PubMed  Google Scholar 

  45. Orning P, Lien E, Fitzgerald KA (2019) Gasdermins and their role in immunity and inflammation. J Exp Med 216(11):2453–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, Lieberman J (2016) Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535(7610):153–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sborgi L, Ruhl S, Mulvihill E, Pipercevic J, Heilig R, Stahlberg H, Farady CJ, Müller DJ, Broz P, Hiller S (2016) GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J 35(16):1766–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen X, He WT, Hu L, Li J, Fang Y, Wang X, Xu X, Wang Z, Huang K, Han J (2016) Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res 26(9):1007–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Joosten LA, Netea MG, Dinarello CA (2013) Interleukin-1beta in innate inflammation, autophagy and immunity. Semin Immunol 25(6):416–424

    Article  CAS  PubMed  Google Scholar 

  50. Dinarello CA, Novick D, Kim S, Kaplanski G (2013) Interleukin-18 and IL-18 binding protein. Front Immunol 4:289

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gupta N, Sahu A, Prabhakar A, KhanN NV, Bajaj N, Sharma M, Ashraf MZ (2017) Activation of NLRP3 inflammasome complex potentiates venous thrombosis in response to hypoxia. Proc Natl Acad Sci USA 114(18):4763–4768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Talreja J, Talwa H, Bauerfeld C, Grossman LI, Zhang K, Tranchida P, Samavati L (2019) HIF-1alpha regulates IL-1beta and IL-17 in sarcoidosis. eLife 8:e44519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lei Q, Yi T, Chen C (2018) NF-κB-gasdermin D (GSDMD) axis couples oxidative stress and NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome-mediated cardiomyocyte pyroptosis following myocardial infarction. Med Sci Monit 24:6044–6052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang Y, Shi P, Chen Q, Huang Z, Zou D, Zhang J, Gao X, Lin Z (2019) Mitochondrial ROS promote macrophage pyroptosis by inducing GSDMD oxidation. J Mol Cell Biol 11(12):1069–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moran E, Ding L, Wang Z, Cheng R, Chen Q, Moore R, Takahashi Y, Ma JX (2014) Protective and antioxidant effects of PPARα in the ischemic retina. Ophthalmol Vis Sci 55(7):4568–4576

    Article  CAS  Google Scholar 

  56. Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73(4):1907–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (81460086); Sichuan Science and Technology Program (2021YJ0230); Thousand Talents Plan of Sichuan Province; Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China.

Author information

Authors and Affiliations

Authors

Contributions

XX conceived, designed the study and wrote the manuscript. XX, KY, HL, and YL performed experiments. All the authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Xiaorong Xin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, X., Yang, K., Liu, H. et al. Hypobaric hypoxia triggers pyroptosis in the retina via NLRP3 inflammasome activation. Apoptosis 27, 222–232 (2022). https://doi.org/10.1007/s10495-022-01710-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-022-01710-7

Keywords

Navigation