Skip to main content

Advertisement

Log in

Regulation of autophagy as a therapeutic option in glioblastoma

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Around three out of one hundred thousand people are diagnosed with glioblastoma multiforme, simply called glioblastoma, which is the most common primary brain tumor in adults. With a dismal prognosis of a little over a year, receiving a glioblastoma diagnosis is oftentimes fatal. A major advancement in its treatment was made almost two decades ago when the alkylating chemotherapeutic agent temozolomide (TMZ) was combined with radiotherapy (RT). Little progress has been made since then. Therapies that focus on the modulation of autophagy, a key process that regulates cellular homeostasis, have been developed to curb the progression of glioblastoma. The dual role of autophagy (cell survival or cell death) in glioblastoma has led to the development of autophagy inhibitors and promoters that either work as monotherapies or as part of a combination therapy to induce cell death, cellular senescence, and counteract the ability of glioblastoma stem cells (GSCs) for initiating tumor recurrence. The myriad of cellular pathways that act upon the modulation of autophagy have created contention between two groups: those who use autophagy inhibition versus those who use promotion of autophagy to control glioblastoma growth. We discuss rationale for using current major therapeutics, their molecular mechanisms for modulation of autophagy in glioblastoma and GSCs, their potentials for making strides in combating glioblastoma progression, and their possible shortcomings. These shortcomings may fuel the innovation of novel delivery systems and therapies involving TMZ in conjunction with another agent to pave the way towards a new gold standard of glioblastoma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Witthayanuwat S, Montien P, Supaadirek C et al (2018) Survival analysis of glioblastoma multiforme. Asian Pac J Cancer Prev 19:2613–2617. https://doi.org/10.22034/APJCP.2018.19.9.2613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stupp R, Mason W, Bent M et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. https://doi.org/10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  3. Thomas A, Tanaka M, Trepel J et al (2017) Temozolomide in the era of precision medicine. Cancer Res 77:823–826. https://doi.org/10.1158/0008-5472.CAN-16-2983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hegi M, Diserens A, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003. https://doi.org/10.1056/NEJMoa043331

    Article  CAS  PubMed  Google Scholar 

  5. Hottinger A, Stupp R, Homicscko K (2014) Standards of care and novel approaches in the management of glioblastoma multiforme. Chin J Cancer 33:32–39. https://doi.org/10.5732/cjc.013.10207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hunter C, Smith R, Cahill D et al (2006) A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res 66:3987–3991. https://doi.org/10.1158/0008-5472.CAN-06-0127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Singh S, Hawkins C, Clarke I et al (2004) Identification of human brain tumor initiating cells. Nature 432:396–401. https://doi.org/10.1038/nature03128

    Article  CAS  PubMed  Google Scholar 

  8. Patel A, Tirosh I, Trombetta J et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344:1396–1401. https://doi.org/10.1126/science.1254257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Furnari F, Cloughesy T, Cavenee W et al (2015) Heterogeneity of epidermal growth factor receptor signalling networks in glioblastoma. Nat Rev Cancer 15:302–310. https://doi.org/10.1038/nrc3918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oberoi R, Parrish K, Sio T et al (2016) Strategies to improve delivery of anticancer drugs across the blood–brain barrier to treat glioblastoma. Neuro Oncol 18:27–36. https://doi.org/10.1093/neuonc/nov164

    Article  CAS  PubMed  Google Scholar 

  11. Lathia J, Mack S, Mulkearns-Hubert E et al (2015) Cancer stem cells in glioblastoma. Genes Dev 29:1203–1217. https://doi.org/10.1101/gad.261982.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ciechomska I (2018) The role of autophagy in neoplastic cells: characteristics of the interdependencies between autophagy and apoptosis; modulation of autophagy as a new therapeutic strategy in the treatment of gliomas. Postep Biochem 64:2. https://doi.org/10.18388/pb.2018_121

    Article  Google Scholar 

  13. Goldhoff P, Clarke J, Smirnov I et al (2012) Clinical stratification of glioblastoma based on alterations in retinoblastoma tumor suppressor protein (RB1) and association with the proneural subtype. J Neuropathol Exp Neurol 71:83–89. https://doi.org/10.1097/NEN.0b013e31823fe8f1

    Article  CAS  PubMed  Google Scholar 

  14. Brennan C, Verhaak R, McKenna A et al (2013) The somatic genomic landscape of glioblastoma. Cell 155:462–477. https://doi.org/10.1016/j.cell.2013.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aldape K, Zadeh G, Mansouri S et al (2015) Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129:829–848. https://doi.org/10.1007/s00401-015-1432-1

    Article  CAS  PubMed  Google Scholar 

  16. Danial N, Hockenbery D (2018) Cell death. In: Hoffman R (ed) Hematology: basic principles and practice, vol 18, 7th edn. Elsevier, Mumbai, pp 186–196

    Chapter  Google Scholar 

  17. Huang Z, Zhou L, Chen Z et al (2016) Stress management by autophagy: implications for chemoresistance. Int J Cancer 139:23–32. https://doi.org/10.1002/ijc.29990

    Article  CAS  PubMed  Google Scholar 

  18. Yang K, Niu L, Bai Y et al (2019) Glioblastoma: targeting the autophagy in tumorigenesis. Brain Res Bull 153:334–340. https://doi.org/10.1016/j.brainresbull.2019.09.012

    Article  PubMed  Google Scholar 

  19. Shimizu S, Yoshida T, Tsujioka M et al (2014) Autophagic cell death and cancer. Int J Mol Sci 15:3145–3153. https://doi.org/10.3390/ijms15023145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kimmelman AC, White E (2017) Autophagy and tumor metabolism. Cell Metab 25:1037–1043. https://doi.org/10.1016/j.cmet.2017.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Martinez-Vicente M, Cuervo A (2007) Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet 6:352–361. https://doi.org/10.1016/S1474-4422(07)70076-5

    Article  CAS  Google Scholar 

  22. Colella B, Faienza F, Bartolomeo S (2019) EMT regulation by autophagy: a new perspective in glioblastoma biology. Cancers (Basel) 11:312. https://doi.org/10.3390/cancers11030312

    Article  CAS  Google Scholar 

  23. Galluzzi L, Pietrocola F, Bravo-San Pedro J et al (2015) Autophagy in malignant transformation and cancer progression. EMBO J 34:856–880. https://doi.org/10.15252/embj.201490784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Amaravadi R, Lippincott-Schwartz J, Yin X et al (2011) Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res 17:654–666. https://doi.org/10.1158/1078-0432.CCR-10-2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. López-Otín C, Blasco M, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boya P, Reggiori F, Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15:713–720. https://doi.org/10.1038/ncb2788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Laplante M, Sabatini D (2009) mTOR signaling at a glance. J Cell Sci 122:3589–3594. https://doi.org/10.1242/jcs.051011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wong P, Puente C, Ganley I et al (2013) The ULK1 complex: sensing nutrient signals for autophagy activation. Autophagy 9:124–137. https://doi.org/10.4161/auto.23323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ohgaki H, Kleihues P (2011) Genetic profile of astrocytic and oligodendroglial gliomas. Brain Tumor Pathol 28:177–183. https://doi.org/10.1007/s10014-011-0029-1

    Article  CAS  PubMed  Google Scholar 

  30. Frattini V, Trifonov V, Chan J et al (2013) The integrated landscape of driver genomic alterations in glioblastoma. Nat Genet 45:1141–1149. https://doi.org/10.1038/ng.2734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cordani M, Butera G, Pacchiana R et al (2017) Molecular interplay between mutant p53 proteins and autophagy in cancer cells. Biochim Biophys Acta Rev Cancer 1867:19–28. https://doi.org/10.1016/j.bbcan.2016.11.003

    Article  CAS  PubMed  Google Scholar 

  32. Jutten B, Rouschop K (2014) EGFR signaling and autophagy dependence of growth, survival, and therapy resistance. Cell Cycle 13:42–51. https://doi.org/10.4161/cc.27518

    Article  CAS  PubMed  Google Scholar 

  33. Mathew R, Karp C, Beaudoin B et al (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137:1062–1075. https://doi.org/10.1016/j.cell.2009.03.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen J, Zhang P, Chen W et al (2015) ATM-mediated PTEN phosphorylation promotes PTEN nuclear translocation and autophagy in response to DNA-damaging agents in cancer cells. Autophagy 11:239–252. https://doi.org/10.1080/15548627.2015.1009767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Padmakrishnan CJ, Easwer HV, Vijayakurup V et al (2019) High LC3/Beclin expression correlates with poor survival in glioma: a definitive role for autophagy as evidenced by in vitro autophagic flux. Pathol Oncol Res 25:137–148. https://doi.org/10.1007/s12253-017-0310-7

    Article  CAS  Google Scholar 

  36. Hou J, Han Z, Jing Y et al (2013) Autophagy prevents irradiation injury and maintains stemness through decreasing ROS generation in mesenchymal stem cells. Cell Death Dis 4:884. https://doi.org/10.1038/cddis.2013.338

    Article  CAS  Google Scholar 

  37. García-Prat L, Martínez-Vicente M, Periguero E et al (2016) Autophagy maintains stemness by preventing senescence. Nature 529:37–42. https://doi.org/10.1038/nature16187

    Article  CAS  PubMed  Google Scholar 

  38. Martinez-Outschoorn U, Prisco M, Ertel A et al (2011) Ketones and lactate increase cancer cell “stemness”, driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via metabolo-genomics. Cell Cycle 10:1271–1286. https://doi.org/10.4161/cc.10.8.15330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ricci-Vitiani L, Pallini R, Biffoni M et al (2010) Tumor vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468:824–828. https://doi.org/10.1038/nature09557

    Article  CAS  PubMed  Google Scholar 

  40. Galavotti S, Bartesaghi S, Faccenda D et al (2013) The autophagy-associated factors DRAM1 and p62 regulate cell migration and invasion in glioblastoma stem cells. Oncogene 32:699–712. https://doi.org/10.1038/onc.2012.111

    Article  CAS  PubMed  Google Scholar 

  41. Katayama M, Kawaguchi T, Berger M et al (2007) DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ 14:548–558. https://doi.org/10.1038/sj.cdd.4402030

    Article  CAS  PubMed  Google Scholar 

  42. Natsumeda M, Aoki H, Miyahara H et al (2011) Induction of autophagy in temozolomide treated malignant gliomas. Neuropathology 31:486–493. https://doi.org/10.1111/j.1440-1789.2010.01197.x

    Article  PubMed  Google Scholar 

  43. Filippi-Chiela E, Bueno e Silva M, Thomé M, et al (2015) Single-cell analysis challenges the connection between autophagy and senescence induced by DNA damage. Autophagy 11:1099–1113. https://doi.org/10.1080/15548627.2015.1009795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lefranc F, Kiss R (2006) Autophagy, the Trojan horse to combat glioblastomas. Neurosurg Focus 20:E7. https://doi.org/10.3171/foc.2006.20.4.4

    Article  PubMed  Google Scholar 

  45. Lum J, Bauer D, Kong M et al (2005) Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120:237–248. https://doi.org/10.1016/j.cell.2004.11.046

    Article  CAS  PubMed  Google Scholar 

  46. Chen J, Li Y, Yu T et al (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488:522–526. https://doi.org/10.1038/nature11287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Auffinger B, Tobias A, Han Y et al (2014) Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy. Cell Death Differ 21:1119–1131. https://doi.org/10.1038/cdd.2014.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhu H, Wang D, Liu Y et al (2013) Role of the hypoxia-inducible factor-1 alpha induced autophagy in the conversion of the non-stem pancreatic cancer cells into CD133+ pancreatic cancer stem-like cells. Cancer Cell Int 13:119. https://doi.org/10.1186/1475-2867-13-119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Koukourakis MI, Mitrakas AG, Giatromanolakis A (2016) Therapeutic interactions of autophagy with radiation and temozolomide in glioblastoma: evidence and issues to resolve. Br J Cancer 114:485–496. https://doi.org/10.1038/bjc.2016.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ogier-Denis E, Codogno P (2003) Autophagy: a barrier or an adaptive response to cancer. Biochim Biophys Acta 1603:113–128. https://doi.org/10.1016/s0304-419x(03)00004-0

    Article  CAS  PubMed  Google Scholar 

  51. Kanzawa T, Germano IM, Komata T et al (2004) Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 11:448–457. https://doi.org/10.1038/sj.cdd.4401359

    Article  CAS  PubMed  Google Scholar 

  52. Friedman HS, Prados MD, Wen PY et al (2009) Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 27:4733–4740. https://doi.org/10.1200/JCO.2008.19.8721

    Article  CAS  PubMed  Google Scholar 

  53. Kreisl TN, Kim L, Moore K et al (2009) Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 27:740–745. https://doi.org/10.1200/JCO.2008.16.3055

    Article  CAS  PubMed  Google Scholar 

  54. Nagane M, Nishikawa R, Narita Y et al (2012) Phase II study of single-agent bevacizumab in Japanese patients with recurrent malignant glioma. Jpn J Clin Oncol 42:887–895. https://doi.org/10.1093/jjco/hys121

    Article  PubMed  PubMed Central  Google Scholar 

  55. Vredenburgh J, Desjardins A, Herndon J II et al (2007) Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 25:4722–4729. https://doi.org/10.1200/JCO.2007.12.2440

    Article  CAS  PubMed  Google Scholar 

  56. Bao S, Wu Q, Sathornsumetee S et al (2006) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66:7843–7848. https://doi.org/10.1158/0008-5472.CAN-06-1010

    Article  CAS  PubMed  Google Scholar 

  57. Jahangiri A, Flanigan P, Aghi MK (2016) Antiangiogenic therapy for glioblastoma. In: Brem S, Abdullah KG (eds) Glioblastoma, vol 10. Elsevier, Philadelphia, pp 143–146

    Chapter  Google Scholar 

  58. Hombach-Klonisch S, Mehrpour M, Shojaei S et al (2018) Glioblastoma and chemoresistance to alkylating agents: involvement of apoptosis, autophagy, and unfolded protein response. Pharmacol Ther 184:13–41. https://doi.org/10.1016/j.pharmthera.2017.10.017

    Article  CAS  PubMed  Google Scholar 

  59. Hu Y-L, DeLay M, Jahangiri A et al (2012) Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res 72:1773–1783. https://doi.org/10.1158/0008-5472.CAN-11-3831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Clark AJ, Lamborn KR, Butowski NA et al (2012) Neurosurgical management and prognosis of patients with glioblastoma that progresses during bevacizumab treatment. Neurosurgery 70:361–370. https://doi.org/10.1227/NEU.0b013e3182314f9d

    Article  PubMed  Google Scholar 

  61. Pascolo S (2016) Time to use a dose of chloroquine as an adjuvant to anti-cancer chemotherapies. Eur J Pharmacol 771:139–144. https://doi.org/10.1016/j.ejphar.2015.12.017

    Article  CAS  PubMed  Google Scholar 

  62. Lee SW, Kim H-K, Lee N-H et al (2015) The synergistic effect of combination temozolomide and chloroquine treatment is dependent on autophagy formation and p53 status in glioma cells. Cancer Lett 360:195–204. https://doi.org/10.1016/j.canlet.2015.02.012

    Article  CAS  PubMed  Google Scholar 

  63. Rosenfeld MR, Ye X, Supko JG et al (2014) A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy 10:1359–1368. https://doi.org/10.4161/auto.28984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Braicu C, Zanoaga O, Zimta A-A et al (2020) Natural compounds modulate the crosstalk between apoptosis- and autophagy-regulated signaling pathways: controlling the uncontrolled expansion of tumor cells. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2020.05.015

    Article  PubMed  Google Scholar 

  65. Lin S-R, Change C-H, Hsu C-F et al (2019) Natural compounds as potential adjuvants to cancer therapy: preclinical evidence. Br J Pharmacol 177:1409–1423. https://doi.org/10.1111/bph.14816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hasima N, Ozpolat B (2014) Regulation of autophagy by polyphenolic compounds as a potential therapeutic strategy for cancer. Cell Death Dis 5:e1509. https://doi.org/10.1038/cddis.2014.467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhou J, Li G, Zheng Y et al (2015) A novel autophagy/mitophagy inhibitor liensinine sensitizes breast cancer cells to chemotherapy through DNM1L-mediated mitochondrial fission. Autophagy 8:1259–1279. https://doi.org/10.1080/15548627.2015.1056970

    Article  CAS  Google Scholar 

  68. Taylor MA, Khathayer F, Ray SK (2019) Quercetin and sodium butyrate synergistically increase apoptosis in rat C6 and human T98G glioblastoma cells through inhibition of autophagy. Neurochem Res 44:1715–1725. https://doi.org/10.1007/s11064-019-02802-8

    Article  CAS  PubMed  Google Scholar 

  69. Chakrabarti M, Ray SK (2015) Anti-tumor activities of luteolin and silibinin in glioblastoma cells: overexpression of miR-7-1-3p augmented luteolin and silibinin to inhibit autophagy and induce apoptosis in glioblastoma in vivo. Apoptosis 21:312–328. https://doi.org/10.1007/s10495-015-1198-x

    Article  CAS  Google Scholar 

  70. Chakrabarti M, Klionsky DJ, Ray SK (2016) miR-30e blocks autophagy and acts synergistically with proanthocyanidin for inhibition of AVEN and BIRC6 to increase apoptosis in glioblastoma stem cells and glioblastoma SNB19 cells. PLoS ONE 11:e0158537. https://doi.org/10.1371/journal.pone.0158537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Racoma IO, Meisen WH, Wang Q-E et al (2013) Thymoquinone inhibits autophagy and induces cathepsin-mediated, caspase-independent cell death in glioblastoma cells. PLoS ONE 8:e72882. https://doi.org/10.1371/journal.pone.0072882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pazhouhi M, Sariri R, Rabzia A et al (2016) Thymoquinone synergistically potentiates temozolomide cytotoxicity through the inhibition of autophagy in U87MG cell line. Iran J Basic Med Sci 19:890–898. https://doi.org/10.22038/IJBMS.2016.7472

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lin C-J, Lee C-C, Shih Y-L et al (2012) Resveratrol enhances the therapeutic effect of temozolomide against malignant glioma in vitro and in vivo by inhibiting autophagy. Free Radic Biol Med 52:377–391. https://doi.org/10.1016/j.freeradbiomed.2011.10.487

    Article  CAS  PubMed  Google Scholar 

  74. Boridy S, Le PU, Petrecca K et al (2014) Celastrol targets proteostasis and acts synergistically with a heat-shock protein 90 inhibitor to kill human glioblastoma cells. Cell Death Dis 5:e1216. https://doi.org/10.1038/cddis.2014.182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yuan G, Yan S-F, Xue H et al (2014) Cucurbitacin I induces protective autophagy in glioblastoma in vitro and in vivo. J Biol Chem 289:10607–10619. https://doi.org/10.1074/jbc.M113.528760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu A-J, Wang S-H, Chen K-C et al (2013) Evodiamine, a plant alkaloid, induces calcium/JNK-mediated autophagy and calcium-mitochondria-mediated apoptosis in human glioblastoma cells. Chemico-biol Interact 205:20–28. https://doi.org/10.1016/j.cbi.2013.06.004

    Article  CAS  Google Scholar 

  77. Wang J, Qi Q, Feng Z et al (2016) Berberine induces autophagy in glioblastoma by targeting the AMPK/mTOR/ULK1-pathway. Oncotarget 7:66944–66958. https://doi.org/10.18632/oncotarget.11396

    Article  PubMed  PubMed Central  Google Scholar 

  78. Singletary K, Milner J (2008) Diet, autophagy, and cancer: a review. Cancer Epidemiol Biomark Prev 17:1596–1610. https://doi.org/10.1158/1055-9965.EPI-07-2917

    Article  CAS  Google Scholar 

  79. Shen S, Zhang Y, Zhang R et al (2014) Ursolic acid induces autophagy in U87MG cells via ROS-dependent endoplasmic reticulum stress. Chemico-biol Interact 218:28–41. https://doi.org/10.1016/j.cbi.2014.04.017

    Article  CAS  Google Scholar 

  80. Jing Z, Han W, Sui X et al (2015) Interaction of autophagy with microRNAs and their potential therapeutic implications in human cancers. Cancer Lett 356:332–338. https://doi.org/10.1016/j.canlet.2014.09.039

    Article  CAS  PubMed  Google Scholar 

  81. Ma B, Yuan Z, Zhang L et al (2017) Long non-coding RNA AC023115.3 suppresses chemoresistance of glioblastoma by reducing autophagy. Biochim Biophys Acta 1864:1393–1404. https://doi.org/10.1016/j.bbamcr.2017.05.008

    Article  CAS  Google Scholar 

  82. Yang AI, Maus MV, O’Rourke DM (2016) General principles of immunotherapy for glioblastoma. In: Brem S, Abdullah KG (eds) Glioblastoma, vol 19. Elsevier, Philadelphia, pp 237–246

    Chapter  Google Scholar 

  83. Kaminska B, Ciechomska IA, Cyranowski S (2020) Chapter 3—autophagy in brain tumor immune evasion and responses to immunotherapy. In: Chouaib S (ed) Autophagy in immune response: impact on cancer immunotherapy. Academic, London, pp 29–52

    Chapter  Google Scholar 

  84. Li T-F, Xu Y-H, Li K et al (2019) Doxorubicin–polyglycerol–nanodiamond composites stimulate glioblastoma cell immunogenicity through activation of autophagy. Acta Biomater 86:381–394. https://doi.org/10.1016/j.actbio.2019.01.020

    Article  CAS  PubMed  Google Scholar 

  85. Zhao L, Xu Y-H, Akasaka T et al (2014) Polyglycerol-coated nanodiamond as a macrophage-evading platform for selective drug delivery in cancer cells. Biomaterials 35:5393–5406. https://doi.org/10.1016/j.biomaterials.2014.03.041

    Article  CAS  PubMed  Google Scholar 

  86. Liu J-R, Yu C-W, Hung P-Y et al (2019) High-selective HDAC6 inhibitor promotes HDAC6 degradation following autophagy modulation and enhances antitumor immunity in glioblastoma. Biochem Pharmacol 163:458–471. https://doi.org/10.1016/j.bcp.2019.03.023

    Article  CAS  PubMed  Google Scholar 

  87. Hottinger AF, Abdullah KG, Stupp R (2016) Current standards of care in glioblastoma therapy. In: Brem S, Abdullah KG (eds) Glioblastoma, vol 6. Elsevier, Philadelphia, pp 73–80

    Chapter  Google Scholar 

  88. Stupp R, Taillibert S, Kanner AA et al (2015) Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial. JAMA 314:2535–2543. https://doi.org/10.1001/jama.2015.16669

    Article  CAS  PubMed  Google Scholar 

  89. Silginer M, Weller M, Stupp R et al (2017) Biological activity of tumor-treating fields in preclinical glioma models. Cell Death Dis 8:e2753. https://doi.org/10.1038/cddis.2017.171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7:606–619. https://doi.org/10.1038/nrg1879

    Article  CAS  PubMed  Google Scholar 

  91. Wu Y-T, Tan H-L, Shui G et al (2010) Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem 285:10850–10861. https://doi.org/10.1074/jbc.M109.080796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang X, Li W, Wang C et al (2014) Inhibition of autophagy enhances apoptosis induced by proteasome inhibitor bortezomib in human glioblastoma U87 and U251 cells. Mol Cell Biochem 385:265–275. https://doi.org/10.1007/s11010-013-1835-z

    Article  CAS  PubMed  Google Scholar 

  93. Wang J, Qi Q, Zhou Q et al (2018) Inhibition of glioma growth by flavokawain B is mediated through endoplasmic reticulum stress induced autophagy. Autophagy 14:2007–2022. https://doi.org/10.1080/15548627.2018.1501133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jin X, Liu Y, Liu X et al (2014) Role of autophagy in high linear energy transfer radiation-induced cytotoxicity to tumor cells. Cancer Sci 105:770–778. https://doi.org/10.1111/cas.12422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kim J, Lee J-W, Kim S-I et al (2011) Thrombin-induced migration and matrix metalloproteinase-9 expression are regulated by MAPK and PI3K pathways in C6 glioma cells. Korean J Physiol Pharmacol 15:211–216. https://doi.org/10.4196/kjpp.2011.15.4.211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Blommaart EF, Krause U, Schellens JP et al (1997) The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur J Biochem 243:240–246. https://doi.org/10.1111/j.1432-1033.1997.0240a.x

    Article  CAS  PubMed  Google Scholar 

  97. Mahadevan D, Chiorean EG, Harris WB et al (2012) Phase I pharmacokinetic and pharmacodynamic study of the pan-PI3K/mTORC vascular targeted pro-drug SF1126 in patients with advanced solid tumours and B-cell malignancies. Eur J Cancer. https://doi.org/10.1016/j.ejca.2012.06.027

    Article  PubMed  PubMed Central  Google Scholar 

  98. Fedrigo CA, Grivicich I, Schunemann DP et al (2011) Radioresistance of human glioma spheroids and expression of HSP70, p53, and EGFR. Radiat Oncol 6:156. https://doi.org/10.1186/1748-717X-6-156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ryabaya OO, Inshakov AN, Egorova AV et al (2017) Autophagy inhibitors chloroquine and LY294002 enhance temozolomide cytotoxicity on cutaneous melanoma cell lines in vitro. Anticancer Drugs 28:307–315. https://doi.org/10.1097/CAD.0000000000000463

    Article  CAS  PubMed  Google Scholar 

  100. Deng L, Lei Y, Liu R et al (2013) Pyrvinium targets autophagy addiction to promote cancer cell death. Cell Death Dis 4:e614. https://doi.org/10.1038/cddis.2013.142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Venugopal C, Hallett R, Vora P et al (2015) Pyrvinium targets CD133 in human glioblastoma brain tumor-initiating cells. Clin Cancer Res 21:5324–5337. https://doi.org/10.1158/1078-0432.CCR-14-3147

    Article  CAS  PubMed  Google Scholar 

  102. Li Y, Yao J, Han C et al (2016) Quercetin, inflammation, and immunity. Nutrients 8:167. https://doi.org/10.3390/nu8030167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kim H, Moon JY, Ahn KS et al (2013) Quercetin induces mitochondrial mediated apoptosis and protective autophagy in human glioblastoma U373MG cells. Oxid Med Cell Longev. https://doi.org/10.1155/2013/596496

    Article  PubMed  PubMed Central  Google Scholar 

  104. Egan DF, Chun MG, Vamos M et al (2015) Small molecule inhibition of autophagy kinase ULK1 and identification of ULK1 substrates. Mol Cell 59:285–297. https://doi.org/10.1016/j.molcel.2015.05.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mauthe M, Orhon I, Rocchi C et al (2018) Chloroquine inhibits autophagy flux by decreasing autophagosome–lysosome fusion. Autophagy 14:1435–1455. https://doi.org/10.1080/15548627.2018.1474314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cristofori AD, Ferrero S, Bertolini I et al (2015) The vacuolar H+ ATPase is a novel therapeutic target for glioblastoma. Oncotarget 6:17514–17531. https://doi.org/10.18632/oncotarget.4239

    Article  PubMed  PubMed Central  Google Scholar 

  107. Liu L-Q, Wang S-B, Shao Y-F et al (2019) Hydroxychloroquine potentiates the anti-cancer effect of bevacizumab on glioblastoma via the inhibition of autophagy. Biomed Pharmacother 118:109339. https://doi.org/10.1016/j.biopha.2019.109339

    Article  CAS  PubMed  Google Scholar 

  108. Michaelides M, Stover N, Francis P et al (2011) Retinal toxicity associated with hydroxychloroquine and chloroquine. Arch Ophthalmol 129:30–39. https://doi.org/10.1001/archophthalmol.2010.321

    Article  CAS  PubMed  Google Scholar 

  109. Trejo-Solís C, Serrano-Garcia N, Escamilla-Ramírez Á et al (2018) Autophagic and apoptotic pathways as targets for chemotherapy in glioblastoma. Int J Mol Sci 19:3773. https://doi.org/10.3390/ijms19123773

    Article  CAS  PubMed Central  Google Scholar 

  110. Voldborg BR, Damstrup L, Spang-Thomsen M et al (1997) Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Ann Oncol 8:1197–1206. https://doi.org/10.1023/a:1008209720526

    Article  CAS  PubMed  Google Scholar 

  111. Ostrom QT, Liao P, Stetson LC et al (2016) Epidemiology of glioblastoma and trends in glioblastoma survivorship. In: Brem S, Abdullah KG (eds) Glioblastoma, vol 2. Elsevier, Philadelphia, pp 11–19

    Chapter  Google Scholar 

  112. Abdullah KG, Adamson C, Brem S (2016) The molecular pathogenesis of glioblastoma. In: Brem S, Abdullah KG (eds) Glioblastoma, vol 3. Elsevier, Philadelphia, pp 21–31

    Chapter  Google Scholar 

  113. Chang C-Y, Kuan Y-H, Ou Y-C et al (2014) Autophagy contributes to gefitinib-induced glioma cell growth inhibition. Exp Cell Res 327:102–112. https://doi.org/10.1016/j.yexcr.2014.05.011

    Article  CAS  PubMed  Google Scholar 

  114. Chang C-Y, Shen C-C, Su H-L et al (2011) Gefitinib induces apoptosis in human glioma cells by targeting Bad phosphorylation. J Neuro-oncol 105:507–522. https://doi.org/10.1007/s11060-011-0632-3

    Article  CAS  Google Scholar 

  115. Chang C-Y, Li J-R, Wu C-C et al (2015) Valproic acid sensitizes human glioma cells to gefitinib-induced autophagy. IUBMB Life 67:869–879. https://doi.org/10.1002/iub.1445

    Article  CAS  PubMed  Google Scholar 

  116. Bilir A, Erguven M, Oktem G et al (2008) Potentiation of cytotoxicity by combination of imatinib and chlorimipramine in glioma. Int J Oncol 32:829–839. https://doi.org/10.3892/ijo.32.4.829

    Article  CAS  PubMed  Google Scholar 

  117. Erguven M, Yazihan N, Aktas E et al (2010) Carvedilol in glioma treatment alone and with imatinib in vitro. Int J Oncol 36:857–866. https://doi.org/10.3892/ijo_00000563

    Article  CAS  PubMed  Google Scholar 

  118. Blommaart EF, Luiken JJ, Blommaart PJ et al (1995) Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rate hepatocytes. J Biol Chem 270:2320–2326. https://doi.org/10.1074/jbc.270.5.2320

    Article  CAS  PubMed  Google Scholar 

  119. MacKeigan JP, Krueger DA (2015) Differentiating the mTOR inhibitors everolimus and sirolimus in the treatment of tuberous sclerosis complex. Neuro Oncol 17:1550–1559. https://doi.org/10.1093/neuonc/nov152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhuang W-Z, Long L-M, Ji W-J et al (2011) Rapamycin induces differentiation of glioma stem/progenitor cells by activating autophagy. Chin J Cancer 30:712–720. https://doi.org/10.5732/cjc.011.10234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhuang W, Li B, Long L et al (2011) Induction of autophagy promotes differentiation of glioma-initiating cells and their radiosensitivity. Int J Cancer 129:2720–2731. https://doi.org/10.1002/ijc.25975

    Article  CAS  PubMed  Google Scholar 

  122. Wang M, Lu KV, Zhu S et al (2006) Mammalian target of rapamycin inhibition promotes response to epidermal growth factor receptor kinase inhibitors in PTEN-deficient and PTEN-intact glioblastoma cells. Cancer Res 66:7864–7869. https://doi.org/10.1158/0008-5472.CAN-04-4392

    Article  CAS  PubMed  Google Scholar 

  123. Takeuchi H, Kondo Y, Fujiwara K et al (2005) Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res 65:3336–3346. https://doi.org/10.1158/0008-5472.CAN-04-3640

    Article  CAS  PubMed  Google Scholar 

  124. Yokoyama T, Iwado E, Kondo Y et al (2008) Autophagy-inducing agents augment the antitumor effect of telerase-selve oncolytic adenovirus OBP-405 on glioblastoma cells. Gene Ther 15:1233–1239. https://doi.org/10.1038/gt.2008.98

    Article  CAS  PubMed  Google Scholar 

  125. Chheda MG, Wen PY, Hochberg FH et al (2015) Vandetanib plus sirolimus in adults with recurrent glioblastoma: results of a phase I and dose expansion cohort study. J Neurooncol 121:627–634. https://doi.org/10.1007/s11060-014-1680-2

    Article  CAS  PubMed  Google Scholar 

  126. Mason WP, MacNeil M, Kavan P et al (2012) A phase I study of temozolomide and everolimus (RAD001) in patients with newly diagnosed and progressive glioblastoma either receiving or not receiving enzyme-inducing anticonvulsants: an NCIC CTG study. Investig N Drugs 30:2344–2351. https://doi.org/10.1007/s10637-011-9775-5

    Article  CAS  Google Scholar 

  127. Alonso MM, Jiang H, Yokoyama T et al (2008) Delta-24-RGD in combination with RAD001 induces enhanced anti-glioma effect via autophagic cell death. Mol Ther 16:487–493. https://doi.org/10.1038/sj.mt.6300400

    Article  CAS  PubMed  Google Scholar 

  128. Goudar RK, Shi Q, Hjelmeland MD et al (2005) Combination therapy of inhibitors of epidermal growth factor receptor/vascular endothelial growth factor receptor 2 (AEE788) and the mammalian target of rapamycin (RAD001) offers improved glioblastoma tumor growth inhibition. Mol Cancer Ther 4:101–112

    CAS  PubMed  Google Scholar 

  129. Maiti P, Scott J, Sengupta D et al (2019) Curcumin and solid lipid curcumin particles induce autophagy, but inhibit mitophagy and the PI3K-Akt/mTOR pathways in cultured glioblastoma cells. Int J Mol Sci 20:399. https://doi.org/10.3390/ijms20020399

    Article  CAS  PubMed Central  Google Scholar 

  130. Guo S, Long M, Li X et al (2016) Curcumin activates autophagy and attenuates oxidative damage in EA.hy926 cells via the Akt/mTOR pathway. Mol Med Rep 13:2187–1293. https://doi.org/10.3892/mmr.2016.4796

    Article  CAS  PubMed  Google Scholar 

  131. Zhao J, Zhu J, Lv X et al (2017) Curcumin potentiates the potent antitumor activity of ACNU against glioblastoma by suppressing the PI3K/AKT and NF-κB/COX-2 signaling pathways. Oncotargets Ther 10:5471–5482. https://doi.org/10.2147/OTT.S149708

    Article  Google Scholar 

  132. Karmakar S, Banik NL, Patel SJ et al (2006) Curcumin activated both receptor-mediated and mitochondria-mediated proteolytic pathways for apoptosis in human glioblastoma T98G cells. Neurosci Lett 407:53–58. https://doi.org/10.1016/j.neulet.2006.08.013

    Article  CAS  PubMed  Google Scholar 

  133. Zhou Y-Y, Li Y, Jiang W-Q et al (2015) MAPK/JNK signalling: a potential autophagy regulation pathway. Biosci Rep 35:e00199. https://doi.org/10.1042/BSR20140141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jarzabek MA, Amberger-Murphy V, Callanan JJ et al (2014) Interrogation of gossypol therapy in glioblastoma implementing cell line and patient-derived tumour models. Br J Cancer 111:2275–2286. https://doi.org/10.1038/bjc.2014.529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Fiveash J (January 2008–June 2012). Gossypol in treating patients with progressive or recurrent glioblastoma multiforme. Identifier NCT00540722. https://clinicaltrials.gov/ct2/show/NCT00540722

  136. Voss V, Senft C, Lang V et al (2010) The pan-Bcl-2 inhibitor (−)-Gossypol triggers autophagic cell death in malignant glioma. Mol Cancer Res 8:1002–1016. https://doi.org/10.1158/1541-7786.MCR-09-0562

    Article  CAS  PubMed  Google Scholar 

  137. Yin D, Wakimoto N, Xing H et al (2008) Cucurbitacin B markedly inhibits growth and rapidly affects the cytoskeleton in glioblastoma multiforme. Int J Cancer 123:1364–1375. https://doi.org/10.1002/ijc.23648

    Article  CAS  PubMed  Google Scholar 

  138. Agarwal S, Maekawa T (2020) Nano delivery of natural substances as prospective autophagy modulators in glioblastoma. Nanomed Nanotechnol Biol Med 19:102270. https://doi.org/10.1016/j.nano.2020.102270

    Article  CAS  Google Scholar 

  139. Lu L, Shen X, Tao B et al (2019) The nanoparticle-facilitated autophagy inhibition of cancer stem cells for improved chemotherapeutic effects on glioblastomas. J Mater Chem B 12:2054–2062. https://doi.org/10.1039/C8TB03165G

    Article  Google Scholar 

  140. Ulasov I, Fares J, Timashev P et al (2020) Editing cytoprotective autophagy in glioma: an unfulfilled potential for therapy. Trends Mol Biol 26:252–262. https://doi.org/10.1016/j.molmed.2019.11.001

    Article  CAS  Google Scholar 

  141. Ishaq M, Ojha R, Sharma AP et al (2020) Autophagy in cancer: recent advances and future directions. Semin Cancer Biol 66:171–181. https://doi.org/10.1016/j.semcancer.2020.03.010

    Article  PubMed  Google Scholar 

  142. Ishimwe N, Zhang W, Qian J et al (2020) Autophagy regulation as a promising approach for improving cancer immunotherapy. Cancer Lett 475:34–42. https://doi.org/10.1016/j.canlet.2020.01.034

    Article  CAS  PubMed  Google Scholar 

  143. Kelly C, Majewska P, Ioannidis S et al (2017) Estimating progression-free survival in patients with glioblastoma using routinely collected data. J Neurooncol 135:621–627. https://doi.org/10.1007/s11060-017-2619-1

    Article  PubMed  PubMed Central  Google Scholar 

  144. Seglen PO, Gordon PB (1982) 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA 79:1889–1892. https://doi.org/10.1073/pnas.79.6.1889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Vlahos CJ, Matter WF, Hui KY et al (1994) A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 269:5241–5248. https://doi.org/10.1016/S0021-9258(17)37680-9

    Article  CAS  PubMed  Google Scholar 

  146. Oppermann H, Faust H, Yamanishi U et al (2019) Carnosine inhibits glioblastoma growth independent from PI3K/Akt/mTOR signaling. PLoS ONE 14:e0218972. https://doi.org/10.1371/journal.pone.0218972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yamamoto A, Tagawa Y, Yoshimori T et al (1998) Bafilomycin A1 prevents maturation of autophagy vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct Funct 23:33–42. https://doi.org/10.1247/csf.23.33

    Article  CAS  PubMed  Google Scholar 

  148. Hori YS, Hosoda R, Akiyama Y et al (2014) Chloroquine potentiates temozolomide cytotoxicity by inhibiting mitochondrial autophagy in glioma cells. J Neuro-oncol 122:11–20. https://doi.org/10.1007/s11060-014-1686-9

    Article  CAS  Google Scholar 

  149. Bursch W (2006) Multiple cell death programs: Charon’s lifts to Hades. FEMS Yeast Res 5:101–110. https://doi.org/10.1016/j.femsyr.2004.07.006

    Article  CAS  Google Scholar 

  150. Coyle T, Levante S, Shetler M et al (1994) In vitro and in vivo cytotoxicity of gossypol against central nervous system tumor cell lines. J Neurooncol 19:25–35. https://doi.org/10.1007/BF01051046

    Article  CAS  PubMed  Google Scholar 

  151. Hendricks BK, Cohen-Gadol AA, Miller JC (2015) Novel delivery methods bypassing the blood–brain and blood–tumor barriers. Neurosurg Focus 38:E10. https://doi.org/10.3171/2015.1.FOCUS14767

    Article  PubMed  Google Scholar 

  152. Bunevicius A, McDannold NJ, Golby AJ (2020) Focused ultrasound strategies for brain tumor therapy. Oper Neurosurg (Hagerstown) 19:9–18. https://doi.org/10.1093/ons/opz374

    Article  Google Scholar 

  153. Han C, Gu H, Wang J et al (2013) Regulation of l-threonine dehydrogenase in somatic cell reprogramming. Stem Cells 31:953–965. https://doi.org/10.1002/stem.1335

    Article  CAS  PubMed  Google Scholar 

  154. Morsi RZ, Hage-Sleiman R, Koveissy H (2018) Noxa: role in cancer pathogenesis and treatment. Curr Cancer Drug Targets 18:914–928. https://doi.org/10.2174/1568009618666180308105048

    Article  CAS  PubMed  Google Scholar 

  155. Ciuffreda L, Di Sanza C, Incani UC et al (2012) The mitogen-activated protein kinase (MAPK) cascade controls phosphatase and tensin homolog (PTEN) expression through multiple mechanisms. J Mol Med 90:667–679. https://doi.org/10.1007/s00109-011-0844-1

    Article  CAS  PubMed  Google Scholar 

  156. Hammouda MB, Ford AE, Liu Y et al (2020) The JNK signaling pathway in inflammatory skin disorders and cancer. Cells 9:857. https://doi.org/10.3390/cells9040857

    Article  CAS  PubMed Central  Google Scholar 

  157. D’Arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis, and autophagy. Cell Biol Int 43:582–592. https://doi.org/10.1002/cbin.11137

    Article  PubMed  Google Scholar 

  158. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516. https://doi.org/10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Pawlowska E, Szczepanska J, Szatkowska M et al (2018) An interplay between senescence, apoptosis and autophagy in glioblastoma multiforme-role in pathogenesis and therapeutic perspective. Int J Mol Sci 18:889. https://doi.org/10.3390/ijms19030889

    Article  CAS  Google Scholar 

  160. Capparelli C, Guido C, Whitaker-Menezes D et al (2012) Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis via glycolysis and ketone production. Cell Cycle 11:2285–2302. https://doi.org/10.4161/cc.20718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Xiao M-C, Qian H, Huang C-K et al (2021) Imatinib inhibits the malignancy of hepatocellular carcinoma by suppressing autophagy. Eur J Pharmacol 906:174217. https://doi.org/10.1016/j.ejphar.2021.174217

    Article  CAS  PubMed  Google Scholar 

  162. Ray SK (2020) Modulation of autophagy for neuroprotection and functional recovery in traumatic spinal cord injury. Neural Regen Res 15:1601–1612. https://doi.org/10.4103/1673-5374.276322

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported in part by the earlier R01 grants (CA-091460 and NS-057811) from the National Institutes of Health (Bethesda, MD, USA) and by the current awards from the South Carolina Honors College Research Program (Columbia, SC, USA) and the University of South Carolina Magellan Scholar Research Program (Columbia, SC, USA).

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the paper.

Corresponding author

Correspondence to Swapan K. Ray.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manea, A.J., Ray, S.K. Regulation of autophagy as a therapeutic option in glioblastoma. Apoptosis 26, 574–599 (2021). https://doi.org/10.1007/s10495-021-01691-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-021-01691-z

Keywords

Navigation