Skip to main content
Log in

Heat shock proteins-driven stress granule dynamics: yet another avenue for cell survival

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Heat shock proteins (HSPs) are evolutionary conserved ‘stress-response’ proteins that facilitate cell survival against various adverse conditions. HSP-mediated cytoprotection was hitherto reported to occur principally in two ways. Firstly, HSPs interact directly or indirectly with apoptosis signaling components and suppress apoptosis. Secondly, through chaperon activity, HSPs suppress proteotoxicity and maintain protein-homeostasis. Recent studies highlight the interaction of HSPs with cytoplasmic stress granules (SGs). SGs are conserved cytoplasmic mRNPs granules that aid in cell survival under stressful conditions. We primarily aim to describe the distinct cell survival strategy mediated by HSPs as the crucial regulators of SGs assembly and disassembly. Based on the growing evidence, HSPs and associated co-chaperones act as important determinants of SG assembly, composition and dissolution. Under cellular stress, as a ‘stress-coping mechanism’, the formation of SGs reprograms protein translation machinery and modulates signaling pathways indispensable for cell survival. Besides their role in suppressing apoptosis, HSPs also regulate protein-homeostasis by their chaperone activity as well as by their tight regulation of SG dynamics. The intricate molecular signaling in and around the nexus of HSPs-SGs and its importance in diseases has to be unearthed. These studies have significant implications in the management of chronic diseases such as cancer and neurodegenerative diseases where SGs possess pathological functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Subjeck JR, Shyy TT (1986) Stress protein systems of mammalian cells. Am J Physiol Cell Physiol 250(1):1–7. https://doi.org/10.1152/ajpcell.1986.250.1.C1

    Article  Google Scholar 

  2. Ritossa F (1963) New puffs induced by temperature shock, DNP and salicylate in salivary chromosomes of D. melanogaster. Drosoph Inf Serv 37:122–123

    Google Scholar 

  3. Millar NL, Murrell GA (2012) Heat shock proteins in tendinopathy: novel molecular regulators. Mediat Inflamm 2012:436203. https://doi.org/10.1155/2012/436203

    Article  CAS  Google Scholar 

  4. Yewdell JW, Antón LC, Bennink JR (1996) Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J Immunol 157(5):1823–1826

    CAS  PubMed  Google Scholar 

  5. Kim J, Nueda A, Meng YH, Dynan WS, Mivechi NF (1997) Analysis of the phosphorylation of human heat shock transcription factor-1 by MAP kinase family members. J Cell Biochem 67(1):43–54. https://doi.org/10.1002/(sici)1097-4644(19971001)67:1%3c43::aid-jcb5%3e3.0.co;2-w

    Article  CAS  PubMed  Google Scholar 

  6. Åkerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11(8):545–555. https://doi.org/10.1038/nrm2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alberti S, Mateju D, Mediani L, Carra S (2017) Granulostasis: protein quality control of RNP granules. Front Mol Neurosci 10:84. https://doi.org/10.3389/fnmol.2017.00084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Buchan JR, Parker R (2009) Eukaryotic stress granules: the ins and outs of translation. Mol Cell 36(6):932–941. https://doi.org/10.1016/j.molcel.2009.11.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Arimoto K, Fukuda H, Imajoh-Ohmi S, Saito H, Takekawa M (2008) Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat Cell Biol 10(11):1324–1332. https://doi.org/10.1038/ncb1791

    Article  CAS  PubMed  Google Scholar 

  10. Arimoto-Matsuzaki K, Saito H, Takekawa M (2016) TIA1 oxidation inhibits stress granule assembly and sensitizes cells to stress-induced apoptosis. Nat Commun 7:10252. https://doi.org/10.1038/ncomms10252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jee H (2016) Size dependent classification of heat shock proteins: a mini-review. J Exerc Rehabil 12(4):255–259. https://doi.org/10.12965/jer.1632642.321

    Article  PubMed  PubMed Central  Google Scholar 

  12. Saibil H (2013) Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol 14(10):630–642. https://doi.org/10.1038/nrm3658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lanneau D, Brunet M, Frisan E, Solary E, Fontenay M, Garrido C (2008) Heat shock proteins: essential proteins for apoptosis regulation. J Cell Mol Med 12(3):743–761. https://doi.org/10.1111/j.1582-4934.2008.00273.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Arya R, Mallik M, Lakhotia SC (2007) Heat shock genes-integrating cell survival and death. J Biosci 32(3):595–610. https://doi.org/10.1007/s12038-007-0059-3

    Article  CAS  PubMed  Google Scholar 

  15. Chatterjee S, Burns TF (2017) Targeting heat shock proteins in cancer: a promising therapeutic approach. Int J Mol Sci 18(9):1978. https://doi.org/10.3390/ijms18091978

    Article  CAS  PubMed Central  Google Scholar 

  16. Sobhan PK, Seervi M, Joseph J, Chandrika BB, Varghese S, Santhoshkumar TR, Pillai MR (2012) Identification of heat shock protein 90 inhibitors to sensitize drug resistant side population tumor cells using a cell based assay platform. Cancer Lett 317(1):78–88. https://doi.org/10.1016/j.canlet.2011.11.009

    Article  CAS  PubMed  Google Scholar 

  17. Ikwegbue PC, Masamba P, Oyinloye BE, Kappo AP (2018) Roles of heat shock proteins in apoptosis, oxidative stress, human inflammatory diseases, and cancer. Pharmaceuticals 11(1):2. https://doi.org/10.3390/ph11010002

    Article  CAS  Google Scholar 

  18. Beere HM, Green DR (2001) Stress management–heat shock protein-70 and the regulation of apoptosis. Trends Cell Biol 11(1):6–10. https://doi.org/10.1016/s0962-8924(00)01874-2

    Article  CAS  PubMed  Google Scholar 

  19. Beere HM (2004) The stress of dying’: the role of heat shock proteins in the regulation of apoptosis. J Cell Sci 117(13):2641–2651. https://doi.org/10.1242/jcs.01284

    Article  CAS  PubMed  Google Scholar 

  20. Penke B, Bogár F, Crul T, Sántha M, Tóth ME, Vígh L (2018) Heat shock proteins and autophagy pathways in neuroprotection: from molecular bases to pharmacological interventions. Int J Mol Sci 19(1):325. https://doi.org/10.3390/ijms19010325

    Article  CAS  PubMed Central  Google Scholar 

  21. Wolf B, Green DR (1999) Suicidal tendencies, apoptotic cell death by caspase family proteinases. J Biol Chem 274:20049–20052. https://doi.org/10.1074/jbc.274.29.20049

    Article  CAS  PubMed  Google Scholar 

  22. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. https://doi.org/10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bender T, Martinou JC (2013) Where killers meet—permeabilization of the outer mitochondrial membrane during apoptosis. Cold Spring Harb Perspect Biol 5(1):a011106. https://doi.org/10.1101/cshperspect.a011106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Parrish AB, Freel CD, Kornbluth S (2013) Cellular mechanisms controlling caspase activation and function. Cold Spring Harb Perspect Biol 5(6):a008672. https://doi.org/10.1101/cshperspect.a008672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zou H, Li Y, Liu X, Wang X (1999) An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274(17):11549–11556. https://doi.org/10.1074/jbc.274.17.11549

    Article  CAS  PubMed  Google Scholar 

  26. Seervi M, Joseph J, Sobhan PK, Bhavya BC, Santhoshkumar TR (2011) Essential requirement of cytochrome c release for caspase activation by procaspase-activating compound defined by cellular models. Cell Death Dis 2(9):e207. https://doi.org/10.1038/cddis.2011.90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tait SW, Green DR (2008) Caspase-independent cell death: leaving the set without the final cut. Oncogene 27(50):6452–6461. https://doi.org/10.1038/onc.2008.311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang C, Youle RJ (2009) The role of mitochondria in apoptosis. Annu Rev Genet 43:95–118. https://doi.org/10.1146/annurev-genet-102108-134850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thorburn A (2007) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathway signaling. J Thorac Oncol 2(6):461–465. https://doi.org/10.1097/JTO.0b013e31805fea64

    Article  PubMed  Google Scholar 

  30. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81(4):505–512. https://doi.org/10.1016/0092-8674(95)90071-3

    Article  CAS  PubMed  Google Scholar 

  31. Huang K, Zhang J, O’Neill KL, Gurumurthy CB, Quadros RM, Tu Y, Luo X (2016) Cleavage by caspase 8 and mitochondrial membrane association activate the BH3-only protein Bid during TRAIL-induced apoptosis. J Biol Chem 291(22):11843–11851. https://doi.org/10.1074/jbc.m115.711051

    Article  CAS  PubMed  Google Scholar 

  32. Schmitt E, Parcellier A, Gurbuxani S, Cande C, Hammann A, Morales MC, Hunt CR, Dix DJ, Kroemer RT, Giordanetto F, Jäättelä M (2003) Chemosensitization by a non-apoptogenic heat shock protein 70-binding apoptosis-inducing factor mutant. Cancer Res 63(23):8233–8240

    CAS  PubMed  Google Scholar 

  33. Kumar S, Stokes J III, Singh UP, Gunn KS, Acharya A, Manne U, Mishra M (2016) Targeting Hsp70: a possible therapy for cancer. Cancer Lett 374(1):156–166. https://doi.org/10.1016/j.canlet.2016.01.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kumar Y, Tatu U (2003) Stress protein flux during recovery from simulated ischemia: induced heat shock protein 70 confers cytoprotection by suppressing JNK activation and inhibiting apoptotic cell death. Proteomics 3(4):513–526. https://doi.org/10.1002/pmic.200390065

    Article  CAS  PubMed  Google Scholar 

  35. Zorzi E, Bonvini P (2011) Inducible hsp70 in the regulation of cancer cell survival: analysis of chaperone induction, expression and activity. Cancers 3(4):3921–3956. https://doi.org/10.3390/cancers3043921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gotoh T, Terada K, Oyadomari S, Mori M (2004) hsp70-DnaJ chaperone pair prevents nitric oxide-and CHOP-induced apoptosis by inhibiting translocation of Bax to mitochondria. Cell Death Differ 11(4):390–402. https://doi.org/10.1038/sj.cdd.4401369

    Article  CAS  PubMed  Google Scholar 

  37. Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2(8):469–475. https://doi.org/10.1038/35019501

    Article  CAS  PubMed  Google Scholar 

  38. Jäättelä M, Wissing D, Kokholm K, Kallunki T, Egeblad M (1998) Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J 17(21):6124–6134. https://doi.org/10.1093/emboj/17.21.6124

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sakahira H, Nagata S (2002) Co-translational folding of caspase-activated DNase with Hsp70, Hsp40, and inhibitor of caspase-activated DNase. J Biol Chem 277(5):3364–3370. https://doi.org/10.1074/jbc.M110071200

    Article  CAS  PubMed  Google Scholar 

  40. Gurbuxani S, Schmitt E, Cande C, Parcellier A, Hammann A, Daugas E, Kouranti I, Spahr C, Pance A, Kroemer G, Garrido C (2003) Heat shock protein 70 binding inhibits the nuclear import of apoptosis-inducing factor. Oncogene 22(43):6669–6678. https://doi.org/10.1038/sj.onc.1206794

    Article  CAS  PubMed  Google Scholar 

  41. Wang J, Lee J, Liem D, Ping P (2017) HSPA5 Gene encoding Hsp70 chaperone BiP in the endoplasmic reticulum. Gene 618:14–23. https://doi.org/10.1016/j.gene.2017.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nylandsted J, Gyrd-Hansen M, Danielewicz A, Fehrenbacher N, Lademann U, Høyer-Hansen M, Weber E, Multhoff G, Rohde M, Jäättela (2004) Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med 200(4):425–435. https://doi.org/10.1084/jem.20040531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Clemons NJ, Buzzard K, Steel R, Anderson RL (2005) Hsp72 inhibits Fas-mediated apoptosis upstream of the mitochondria in type II cells. J Biol Chem 280(10):9005–9012. https://doi.org/10.1074/jbc.M414165200

    Article  CAS  PubMed  Google Scholar 

  44. Van Molle W, Wielockx B, Mahieu T, Takada M, Taniguchi T, Sekikawa K, Libert C (2002) HSP70 protects against TNF-induced lethal inflammatory shock. Immunity 16(5):685–695. https://doi.org/10.1016/s1074-7613(02)00310-2

    Article  PubMed  Google Scholar 

  45. Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14(22):5579–5588

    Article  CAS  Google Scholar 

  46. Chang HY, Nishitoh H, Yang X, Ichijo H, Baltimore D (1998) Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx. Science 281(5384):1860–1863. https://doi.org/10.1126/science.281.5384.1860

    Article  CAS  PubMed  Google Scholar 

  47. Hwang JR, Zhang C, Patterson C (2005) C-terminus of heat shock protein 70–interacting protein facilitates degradation of apoptosis signal-regulating kinase 1 and inhibits apoptosis signal-regulating kinase 1–dependent apoptosis. Cell Stress Chaperon 10(2):147. https://doi.org/10.1379/csc-90r.1

    Article  CAS  Google Scholar 

  48. Ran R, Lu A, Zhang L, Tang Y, Zhu H, Xu H, Feng Y, Han C, Zhou G, Rigby AC, Sharp FR (2004) Hsp70 promotes TNF-mediated apoptosis by binding IKKγ and impairing NF-κB survival signaling. Genes Dev 18(12):1466–1481. https://doi.org/10.1101/gad.1188204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang X, Chen M, Zhou J, Zhang X (2014) HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy. Int J Oncol 45(1):18–30. https://doi.org/10.3892/ijo.2014.2399

    Article  CAS  PubMed  Google Scholar 

  50. Charette SJ, Lavoie JN, Lambert H, Landry J (2000) Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol Cell Biol 20(20):7602–7612. https://doi.org/10.1128/mcb.20.20.7602-7612.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tsuruta F, Sunayama J, Mori Y, Hattori S, Shimizu S, Tsujimoto Y, Yoshioka K, Masuyama N, Gotoh Y (2004) JNK promotes Bax translocation to mitochondria through phosphorylation of 14–3-3 proteins. EMBO J 23(8):1889–1899. https://doi.org/10.1038/sj.emboj.7600194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Havasi A, Li Z, Wang Z, Martin JL, Botla V, Ruchalski K, Schwartz JH, Borkan SC (2008) Hsp27 inhibits Bax activation and apoptosis via a phosphatidylinositol 3-kinase-dependent mechanism. J Biol Chem 283(18):12305–12313. https://doi.org/10.1074/jbc.M801291200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhuang H, Jiang W, Cheng W, Qian K, Dong W, Cao L, Huang Q, Li S, Dou F, Chiu JF, Fang XX (2010) Down-regulation of HSP27 sensitizes TRAIL-resistant tumor cell to TRAIL-induced apoptosis. Lung Cancer 68(1):27–38. https://doi.org/10.1016/j.lungcan.2009.05.014

    Article  PubMed  Google Scholar 

  54. Kim J, Kim SY, Kang S, Yoon HR, Sun BK, Kang D, Kim JH, Song JJ (2012) HSP27 modulates survival signaling networks in cells treated with curcumin and TRAIL. Cell Signal 24(7):1444–1452. https://doi.org/10.1016/j.cellsig.2012.03.009

    Article  CAS  PubMed  Google Scholar 

  55. Mellier G, Liu D, Bellot G, Holme AL, Pervaiz S (2013) Small molecule sensitization to TRAIL is mediated via nuclear localization, phosphorylation and inhibition of chaperone activity of Hsp27. Cell Death Dis 4(10):e890. https://doi.org/10.1038/cddis.2013.413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Paul C, Manero F, Gonin S, Kretz-Remy C, Virot S, Arrigo AP (2002) Hsp27 as a negative regulator of cytochrome C release. Mol Cell Biol 22(3):816–834. https://doi.org/10.1128/mcb.22.3.816-834.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chauhan D, Li G, Hideshima T, Podar K, Mitsiades C, Mitsiades N, Catley L, Tai YT, Hayashi T, Shringarpure R, Burger R (2003) Hsp27 inhibits release of mitochondrial protein Smac in multiple myeloma cells and confers dexamethasone resistance. Blood 102(9):3379–3386. https://doi.org/10.1182/blood-2003-05-1417

    Article  CAS  PubMed  Google Scholar 

  58. Concannon CG, Orrenius S, Samali A (2001) Hsp27 inhibits cytochrome c-mediated caspase activation by sequestering both pro-caspase-3 and cytochrome c. Gene Exp J Liver Res 9(4–5):195–201. https://doi.org/10.3727/000000001783992605

    Article  CAS  Google Scholar 

  59. Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11(7):515–528. https://doi.org/10.1038/nrm2918

    Article  CAS  PubMed  Google Scholar 

  60. Hoter A, El-Sabban ME, Naim HY (2018) The HSP90 family: structure, regulation, function, and implications in health and disease. Int J Mol Sci 19(9):2560. https://doi.org/10.3390/ijms19092560

    Article  CAS  PubMed Central  Google Scholar 

  61. Zhang R, Luo D, Miao R, Bai L, Ge Q, Sessa WC, Min W (2005) Hsp90–Akt phosphorylates ASK1 and inhibits ASK1-mediated apoptosis. Oncogene 24(24):3954–3963. https://doi.org/10.1038/sj.onc.1208548

    Article  CAS  PubMed  Google Scholar 

  62. Bai D, Ueno L, Vogt PK (2009) Akt-mediated regulation of NFκB and the essentialness of NFκB for the oncogenicity of PI3K and Akt. Int J Cancer 125(12):2863–2870. https://doi.org/10.1002/ijc.24748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. He K, Zheng X, Zhang L, Yu J (2013) Hsp90 inhibitors promote p53-dependent apoptosis through PUMA and Bax. Mol Cancer Ther 12(11):2559–2568. https://doi.org/10.1158/1535-7163

    Article  PubMed  Google Scholar 

  64. Panner A, Murray JC, Berger MS, Pieper RO (2007) Heat shock protein 90α recruits FLIPS to the death-inducing signaling complex and contributes to TRAIL resistance in human glioma. Cancer Res 67(19):9482–9489. https://doi.org/10.1158/0008-5472.CAN-07-0569

    Article  CAS  PubMed  Google Scholar 

  65. Lewis J, Devin A, Miller A, Lin Y, Rodriguez Y, Neckers L, Liu ZG (2000) Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation. J Biol Chem 275(14):10519–10526. https://doi.org/10.1074/jbc.275.14.10519

    Article  CAS  PubMed  Google Scholar 

  66. Cohen-Saidon C, Carmi I, Keren A, Razin E (2006) Antiapoptotic function of Bcl-2 in mast cells is dependent on its association with heat shock protein 90β. Blood 107(4):1413–1420. https://doi.org/10.1182/blood-2005-07-2648

    Article  CAS  PubMed  Google Scholar 

  67. Kang BH, Plescia J, Dohi T, Rosa J, Doxsey SJ, Altieri DC (2007) Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 131(2):257–270. https://doi.org/10.1016/j.cell.2007.08.028

    Article  CAS  PubMed  Google Scholar 

  68. Pandey P, Saleh A, Nakazawa A, Kumar S, Srinivasula SM, Kumar V, Weichselbaum R, Nalin C, Alnemri ES, Kufe D, Kharbanda S (2000) Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J 19(16):4310–4322. https://doi.org/10.1093/emboj/19.16.4310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fortugno P, Beltrami E, Plescia J, Fontana J, Pradhan D, Marchisio PC, Sessa WC, Altieri DC (2003) Regulation of survivin function by Hsp90. Proc Natl Acad Sci USA 100(24):13791–13796. https://doi.org/10.1073/pnas.2434345100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kijima T, Prince TL, Tigue ML, Yim KH, Schwartz H, Beebe K, Lee S, Budzynski MA, Williams H, Trepel JB, Sistonen L (2018) HSP90 inhibitors disrupt a transient HSP90-HSF1 interaction and identify a noncanonical model of HSP90-mediated HSF1 regulation. Sci Rep 8(1):1–3. https://doi.org/10.1038/s41598-018-25404-w

    Article  CAS  Google Scholar 

  71. Morton EA, Lamitina T (2013) Caenorhabditis elegans HSF-1 is an essential nuclear protein that forms stress granule-like structures following heat shock. Aging Cell 12(1):112–120. https://doi.org/10.1111/acel.12024

    Article  CAS  PubMed  Google Scholar 

  72. van Leeuwen W, Rabouille C (2019) Cellular stress leads to the formation of membraneless stress assemblies in eukaryotic cells. Traffic 20(9):623–638. https://doi.org/10.1111/tra.12669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Protter DS, Parker R (2016) Principles and properties of stress granules. Trend Cell Biol 26(9):668–679. https://doi.org/10.1016/j.tcb.2016.05.004

    Article  CAS  Google Scholar 

  74. Cao X, Jin X, Liu B (2020) The involvement of stress granules in aging and aging-associated diseases. Aging Cell 19(4):e13136. https://doi.org/10.1111/acel.13136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Anderson P, Kedersha N (2002) Visibly stressed: the role of eIF2, TIA-1, and stress granules in protein translation. Cell Stress Chaperon 7(2):213. https://doi.org/10.1379/1466-1268(2002)007%3c0213:vstroe%3e2.0.co;2

    Article  CAS  Google Scholar 

  76. Lin Y, Protter DS, Rosen MK, Parker R (2015) Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol Cell 60(2):208–219. https://doi.org/10.1016/j.molcel.2015.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Anderson P, Kedersha N (2008) Stress granules: the Tao of RNA triage. Trends Biochem Sci 33(3):141–150. https://doi.org/10.1016/j.tibs.2007.12.003

    Article  CAS  PubMed  Google Scholar 

  78. Kedersha N, Anderson P (2002) Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem Soc Trans 30(6):963–969. https://doi.org/10.1042/bst0300963

    Article  CAS  PubMed  Google Scholar 

  79. Stöhr N, Lederer M, Reinke C, Meyer S, Hatzfeld M, Singer RH, Hüttelmaier S (2006) ZBP1 regulates mRNA stability during cellular stress. J Cell Biol 175(4):527–534. https://doi.org/10.1083/jcb.200608071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kedersha N, Anderson P (2009) Regulation of translation by stress granules and processing bodies. Prog Mol Biol Transl 90:155–185. https://doi.org/10.1016/S1877-1173(09)90004-7

    Article  CAS  Google Scholar 

  81. Kedersha N, Panas MD, Achorn CA, Lyons S, Tisdale S, Hickman T, Thomas M, Lieberman J, McInerney GM, Ivanov P (2016) G3BP–Caprin1–USP10 complexes mediate stress granule condensation and associate with 40S subunits. J Cell Biol 212(7):e201508028. https://doi.org/10.1083/jcb.201508028

    Article  CAS  Google Scholar 

  82. Ohn T, Anderson P (2010) The role of posttranslational modifications in the assembly of stress granules. Wiley Interdiscip Rev RNA 1(3):486–493. https://doi.org/10.1002/wrna.23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Advani VM, Ivanov P (2020) Stress granule subtypes: an emerging link to neurodegeneration. Cell Mol Life Sci. https://doi.org/10.1007/s00018-020-03565-0

    Article  PubMed  Google Scholar 

  84. Panas MD, Ivanov P, Anderson P (2016) Mechanistic insights into mammalian stress granule dynamics. J Cell Biol 215:313–323. https://doi.org/10.1083/jcb.201609081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mahboubi H, Stochaj U (2017) Cytoplasmic stress granules: dynamic modulators of cell signaling and disease. BBA-Mol Basis Dis 1863:884–895. https://doi.org/10.1016/j.bbadis.2016.12.022

    Article  CAS  Google Scholar 

  86. Ash PE, Vanderweyde TE, Youmans KL, Apicco DJ, Wolozin B (2014) Pathological stress granules in Alzheimer’s disease. Brain Res 1584:52–58. https://doi.org/10.1016/j.brainres.2014.05.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kwon S, Zhang Y, Matthias P (2007) The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. Genes Dev 21(24):3381–3394. https://doi.org/10.1101/gad.461107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zheng Y, Zhu G, Tang Y, Yan J, Han S, Yin J, Peng B, He X, Liu W (2020) HDAC6, a novel cargo for autophagic clearance of stress granules, mediates the repression of the type I interferon response during coxsackievirus A16 infection. Front Microbiol 11:78. https://doi.org/10.3389/fmicb.2020.00078

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wang B, Maxwell BA, Joo JH, Gwon Y, Messing J, Mishra A, Shaw TI, Ward AL, Quan H, Sakurada SM, Pruett-Miller SM, Bertorini T, Vogel P, Kim HJ, Peng J, Taylor JP, Kundu M (2019) ULK1 and ULK2 regulate stress granule disassembly through phosphorylation and activation of VCP/p97. Mol Cell 74(4):742–757. https://doi.org/10.1016/j.molcel.2019.03.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ganassi M, Mateju D, Bigi I, Mediani L, Poser I, Lee HO, Seguin SJ, Morelli FF, Vinet J, Leo G, Pansarasa O (2016) A surveillance function of the HSPB8-BAG3-HSP70 chaperone complex ensures stress granule integrity and dynamism. Mol Cell 63(5):796–810. https://doi.org/10.1016/j.molcel.2016.07.021

    Article  CAS  PubMed  Google Scholar 

  91. Takahashi M, Higuchi M, Matsuki H, Yoshita M, Ohsawa T, Oie M, Fujii M (2013) Stress granules inhibit apoptosis by reducing reactive oxygen species production. Mol Cell Biol 33(4):815–829. https://doi.org/10.1128/MCB.00763-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Candé C, Vahsen N, Métivier D, Tourrière H, Chebli K, Garrido C, Tazi J, Kroemer G (2004) Regulation of cytoplasmic stress granules by apoptosis-inducing factor. J Cell Sci 117(19):4461–4468. https://doi.org/10.1242/jcs.01356

    Article  CAS  PubMed  Google Scholar 

  93. Anderson P, Kedersha N, Ivanov P (2015) Stress granules P-bodies and cancer. BBA-Gene Regul Mech 1849:861–870. https://doi.org/10.1016/j.bbagrm.2014.11.009

    Article  CAS  Google Scholar 

  94. Timalsina S, Arimoto-Matsuzaki K, Kitamura M, Xu X, Wenzhe Q, Ishigami-Yuasa M, Kagechika H, Hata Y (2018) Chemical compounds that suppress hypoxia-induced stress granule formation enhance cancer drug sensitivity of human cervical cancer HeLa cells. J Biochem 164(5):381–391. https://doi.org/10.1093/jb/mvy062

    Article  CAS  PubMed  Google Scholar 

  95. Dou N, Chen J, Yu S, Gao Y, Li Y (2016) G3BP1 contributes to tumor metastasis via upregulation of Slug expression in hepatocellular carcinoma. Am J Cancer Res 6(11):2641

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lloyd RE (2012) How do viruses interact with stress-associated RNA granules? PLoS Pathog 8(6):e1002741. https://doi.org/10.1371/journal.ppat.1002741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Khalfallah Y, Kuta R, Grasmuck C, Prat A, Durham HD, Velde CV (2018) TDP-43 regulation of stress granule dynamics in neurodegenerative disease-relevant cell types. Sci Rep 8(1):1–3. https://doi.org/10.1038/s41598-018-25767-0

    Article  CAS  Google Scholar 

  98. Mateju D, Franzmann TM, Patel A, Kopach A, Boczek EE, Maharana S, Lee HO, Carra S, Hyman AA, Alberti S (2017) An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function. EMBO J 36(12):1669–1687. https://doi.org/10.15252/embj.201695957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kedersha NL, Gupta M, Li W, Miller I, Anderson P (1999) RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2α to the assembly of mammalian stress granules. J Cell Biol 147(7):1431–1442. https://doi.org/10.1083/jcb.147.7.1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. O’Meara TR, O’Meara MJ, Polvi EJ, Pourhaghighi MR, Liston SD, Lin ZY, Veri AO, Emili A, Gingras AC, Cowen LE (2019) Global proteomic analyses define an environmentally contingent Hsp90 interactome and reveal chaperone-dependent regulation of stress granule proteins and the R2TP complex in a fungal pathogen. PLoS Biol 17(7):e3000358. https://doi.org/10.1371/journal.pbio.3000358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Groušl T, Ivanov P, Frydlová I, Vašicová P, Janda F, Vojtová J, Malínská K, Malcová I, Nováková L, Janošková D, Valášek L (2009) Robust heat shock induces eIF2α-phosphorylation-independent assembly of stress granules containing eIF3 and 40S ribosomal subunits in budding yeast, Saccharomyces cerevisiae. J Cell Sci 122(12):2078–2088. https://doi.org/10.1242/jcs.045104

    Article  CAS  PubMed  Google Scholar 

  102. Gilks N, Kedersha N, Ayodele M, Shen L, Stoecklin G, Dember LM, Anderson P (2004) Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell 15(12):5383–5398. https://doi.org/10.1091/mbc.e04-08-0715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mazroui R, Di Marco S, Kaufman RJ, Gallouzi IE (2007) Inhibition of the ubiquitin-proteasome system induces stress granule formation. Mol Biol Cell 18(7):2603–2618. https://doi.org/10.1091/mbc.e06-12-1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cherkasov V, Hofmann S, Druffel-Augustin S, Mogk A, Tyedmers J, Stoecklin G, Bukau B (2013) Coordination of translational control and protein homeostasis during severe heat stress. Curr Biol 23(24):2452–2462. https://doi.org/10.1016/j.cub.2013.09.058

    Article  CAS  PubMed  Google Scholar 

  105. Walters RW, Parker R (2015) Coupling of ribostasis and proteostasis: Hsp70 proteins in mRNA metabolism. Trends Biochem Sci 40(10):552–559. https://doi.org/10.1016/j.tibs.2015.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hu S, Claud EC, Musch MW, Chang EB (2010) Stress granule formation mediates the inhibition of colonic Hsp70 translation by interferon-γ and tumor necrosis factor-α. Am J Physiol Gastrointest Liver Physiol 298(4):G481–G492. https://doi.org/10.1152/ajpgi.00234.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Walters RW, Muhlrad D, Garcia J, Parker R (2015) Differential effects of Ydj1 and Sis1 on Hsp70-mediated clearance of stress granules in Saccharomyces cerevisiae. RNA 21(9):1660–1671. https://doi.org/10.1261/rna.053116.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kishor A, White EJ, Matsangos AE, Yan Z, Tandukar B, Wilson GM (2017) Hsp70’s RNA-binding and mRNA-stabilizing activities are independent of its protein chaperone functions. J Biol Chem 292(34):14122–14133. https://doi.org/10.1074/jbc.M117.785394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mahboubi H, Moujaber O, Kodiha M, Stochaj U (2020) The Co-Chaperone HspBP1 is a novel component of stress granules that regulates their formation. Cells 9(4):825. https://doi.org/10.3390/cells9040825

    Article  CAS  PubMed Central  Google Scholar 

  110. Raynes DA, Graner MW, Bagatell R, McLellan C, Guerriero V (2003) Increased expression of the Hsp70 cochaperone HspBP1 in tumors. Tumor Biol 24(6):281–285. https://doi.org/10.1159/000076459

    Article  CAS  Google Scholar 

  111. Webster JM, Darling AL, Uversky VN, Blair LJ (2019) Small heat shock proteins, big impact on protein aggregation in neurodegenerative disease. Front Pharmacol 10:1047. https://doi.org/10.3389/fphar.2019.01047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rhoads SN, Monahan ZT, Yee DS, Leung AY, Newcombe CG, O’Meally RN, Cole RN, Shewmaker FP (2018) The prion like domain of FUS is multiphosphorylated following DNA damage without altering nuclear localization. Mol Biol Cell 29(15):1786–1797. https://doi.org/10.1091/mbc.E17-12-0735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu Z, Zhang S, Gu J, Tong Y, Li Y, Gui X, Long H, Wang C, Zhao C, Lu J, He L (2020) Hsp27 chaperones FUS phase separation under the modulation of stress-induced phosphorylation. Nat Struct Mol Biol 27(4):363–372. https://doi.org/10.1038/s41594-020-0399-3

    Article  CAS  PubMed  Google Scholar 

  114. Suzuki Y, Minami M, Suzuki M, Abe K, Zenno S, Tsujimoto M, Matsumoto K, Minami Y (2009) The Hsp90 inhibitor geldanamycin abrogates colocalization of eIF4E and eIF4E-transporter into stress granules and association of eIF4E with eIF4G. J Biol Chem 284(51):35597–35604. https://doi.org/10.1074/jbc.M109.036285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Matsumoto K, Minami M, Shinozaki F, Suzuki Y, Abe K, Zenno S, Matsumoto S, Minami Y (2011) Hsp90 is involved in the formation of P-bodies and stress granules. Biochem Biophys Res Co 407(4):720–724. https://doi.org/10.1016/j.bbrc.2011.03.088

    Article  CAS  Google Scholar 

  116. Sandqvist A, Björk JK, Åkerfelt M, Chitikova Z, Grichine A, Vourc’h C, Jolly C, Salminen TA, Nymalm Y, Sistonen L (2009) Heterotrimerization of heat-shock factors 1 and 2 provides a transcriptional switch in response to distinct stimuli. Mol Biol Cell 20(5):1340–1347. https://doi.org/10.1091/mbc.e08-08-0864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Alastalo TP, Hellesuo M, Sandqvist A, Hietakangas V, Kallio M, Sistonen L (2003) Formation of nuclear stress granules involves HSF2 and coincides with the nucleolar localization of Hsp70. J Cell Sci 116(17):3557–3570. https://doi.org/10.1242/jcs.00671

    Article  CAS  PubMed  Google Scholar 

  118. Holmberg CI, Illman SA, Kallio M, Mikhailov A, Sistonen L (2000) Formation of nuclear HSF1 granules varies depending on stress stimuli. Cell Stress Chaperon 5(3):219. https://doi.org/10.1379/1466-1268(2000)005%3c0219:fonhgv%3e2.0.co;2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MS acknowledges the financial support by SERB, New Delhi for the research project (CRG/2020/002009) that led to the conceptualization of the review. AV and MS thank the Head, Prof. Shyam S Chauhan and other faculties of Department of Biotechnology, AIIMS, New Delhi for their kind support. AV acknowledges Department of Biotechnology, Govt. of India for the fellowship. The authors sincerely acknowledge the research groups whose remarkable contributions brought us to the understanding of the emerging role of HSPs in SGs under stress conditions.

Funding

The current work was supported by the research grant from Science and Engineering Research Board (SERB), Department of Science and Technology, New Delhi, India (Ref. No. CRG/2020/002009) and AIIMS, Intramural Research Grant (A-830/2020/RS).

Author information

Authors and Affiliations

Authors

Contributions

MS conceived the overall theme and designed the review. MS, AV and SS performed literature search and prepared the manuscript. AV created the schematic diagrams. SS and MS critically reviewed and contributed to the final version of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mahendra Seervi.

Ethics declarations

Conflict of interest

All authors declare no potential conflicts of interest concerning the authorship and publication of this research article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A., Sumi, S. & Seervi, M. Heat shock proteins-driven stress granule dynamics: yet another avenue for cell survival. Apoptosis 26, 371–384 (2021). https://doi.org/10.1007/s10495-021-01678-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-021-01678-w

Keywords

Navigation