Skip to main content
Log in

The function and mechanism of ferroptosis in cancer

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Ferroptosis is a newly defined form of regulated cell death (RCD) characterized by iron overload, lipid reactive oxygen species (ROS) accumulation, and lipid peroxidation, which is different from necrosis, apoptosis, autophagy and other forms of RCD in morphology, biochemistry, function and gene expression. Increasing evidence has shown that ferroptosis is intimately associated with cancer initiation, progression, and suppression. In this review, we summarize the primary mechanisms and signal pathways relevant to ferroptosis and then discuss the potential roles of ferroptosis in cancer, including those related to p53, noncoding RNA (ncRNA), and the tumor microenvironment (TME), to demonstrate the associations between ferroptosis and cancer. Moreover, we list some ferroptosis-based cancer therapies, such as clinical drugs, nanomaterials, exosomes and gene technology, based on previous studies. Finally, we propose some development avenues, challenges, and opportunities for further research on ferroptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Galluzzi L, Vitale I, Aaronson SA et al (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25(3):486–541. https://doi.org/10.1038/s41418-017-0012-4

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B III, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li C, Zhang G, Zhao L, Ma Z, Chen H (2016) Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer. World J Surg Oncol 14(1):15. https://doi.org/10.1186/s12957-016-0769-9

    Article  PubMed  PubMed Central  Google Scholar 

  4. Torresano L, Nuevo-Tapioles C, Santacatterina F, Cuezva JM (2020) Metabolic reprogramming and disease progression in cancer patients. Biochim Biophys Acta Mol Basis Dis 1866(5):165721. https://doi.org/10.1016/j.bbadis.2020.165721

    Article  CAS  PubMed  Google Scholar 

  5. Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, Li B (2019) Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol 12(1):34. https://doi.org/10.1186/s13045-019-0720-y

    Article  PubMed  PubMed Central  Google Scholar 

  6. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R, Tang D (2016) Ferroptosis: process and function. Cell Death Differ 23(3):369–379. https://doi.org/10.1038/cdd.2015.158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascon S, Hatzios SK, Kagan VE, Noel K, Jiang X, Linkermann A, Murphy ME, Overholtzer M, Oyagi A, Pagnussat GC, Park J, Ran Q, Rosenfeld CS, Salnikow K, Tang D, Torti FM, Torti SV, Toyokuni S, Woerpel KA, Zhang DD (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171(2):273–285. https://doi.org/10.1016/j.cell.2017.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yan N, Zhang J (2019) Iron metabolism, ferroptosis, and the links with Alzheimer’s disease. Front Neurosci 13:1443. https://doi.org/10.3389/fnins.2019.01443

    Article  PubMed  Google Scholar 

  9. Catala A, Diaz M (2016) Editorial: impact of lipid peroxidation on the physiology and pathophysiology of cell membranes. Front Physiol 7:423. https://doi.org/10.3389/fphys.2016.00423

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gaschler MM, Stockwell BR (2017) Lipid peroxidation in cell death. Biochem Biophys Res Commun 482(3):419–425. https://doi.org/10.1016/j.bbrc.2016.10.086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, Kapralov AA, Amoscato AA, Jiang J, Anthonymuthu T, Mohammadyani D, Yang Q, Proneth B, Klein-Seetharaman J, Watkins S, Bahar I, Greenberger J, Mallampalli RK, Stockwell BR, Tyurina YY, Conrad M, Bayir H (2017) Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 13(1):81–90. https://doi.org/10.1038/nchembio.2238

    Article  CAS  PubMed  Google Scholar 

  12. Dixon SJ, Winter GE, Musavi LS, Lee ED, Snijder B, Rebsamen M, Superti-Furga G, Stockwell BR (2015) Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem Biol 10(7):1604–1609. https://doi.org/10.1021/acschembio.5b00245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Soupene E, Kuypers FA (2008) Mammalian long-chain acyl-CoA synthetases. Exp Biol Med (Maywood NJ) 233(5):507–521. https://doi.org/10.3181/0710-mr-287

    Article  CAS  Google Scholar 

  14. Shindou H, Shimizu T (2009) Acyl-CoA:lysophospholipid acyltransferases. J Biol Chem 284(1):1–5. https://doi.org/10.1074/jbc.R800046200

    Article  CAS  PubMed  Google Scholar 

  15. Zou Y, Li H, Graham ET, Deik AA, Eaton JK, Wang W, Sandoval-Gomez G, Clish CB, Doench JG, Schreiber SL (2020) Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol 16(3):302–309. https://doi.org/10.1038/s41589-020-0472-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y (2016) Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends Biochem Sci 41(3):274–286. https://doi.org/10.1016/j.tibs.2015.11.012

    Article  CAS  PubMed  Google Scholar 

  17. Winn NC, Volk KM, Hasty AH (2020) Regulation of tissue iron homeostasis: the macrophage “ferrostat.” JCI Insight. https://doi.org/10.1172/jci.insight.132964

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen Y, Fan Z, Yang Y, Gu C (2019) Iron metabolism and its contribution to cancer (review). Int J Oncol 54(4):1143–1154. https://doi.org/10.3892/ijo.2019.4720

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Y, Mikhael M, Xu D, Li Y, Soe-Lin S, Ning B, Li W, Nie G, Zhao Y, Ponka P (2010) Lysosomal proteolysis is the primary degradation pathway for cytosolic ferritin and cytosolic ferritin degradation is necessary for iron exit. Antioxid Redox Signal 13(7):999–1009. https://doi.org/10.1089/ars.2010.3129

    Article  CAS  PubMed  Google Scholar 

  20. Kurz T, Eaton JW, Brunk UT (2011) The role of lysosomes in iron metabolism and recycling. Int J Biochem Cell Biol 43(12):1686–1697. https://doi.org/10.1016/j.biocel.2011.08.016

    Article  CAS  PubMed  Google Scholar 

  21. Asano T, Komatsu M, Yamaguchi-Iwai Y, Ishikawa F, Mizushima N, Iwai K (2011) Distinct mechanisms of ferritin delivery to lysosomes in iron-depleted and iron-replete cells. Mol Cell Biol 31(10):2040–2052. https://doi.org/10.1128/MCB.01437-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC (2014) Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509(7498):105–109. https://doi.org/10.1038/nature13148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G, Tang D (2019) Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2019.03.002

    Article  PubMed  Google Scholar 

  24. Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ III, Kang R, Tang D (2016) Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12(8):1425–1428. https://doi.org/10.1080/15548627.2016.1187366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Forman HJ, Zhang H, Rinna A (2009) Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Asp Med 30(1–2):1–12. https://doi.org/10.1016/j.mam.2008.08.006

    Article  CAS  Google Scholar 

  26. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, Roveri A, Peng X, Porto Freitas F, Seibt T, Mehr L, Aichler M, Walch A, Lamp D, Jastroch M, Miyamoto S, Wurst W, Ursini F, Arner ESJ, Fradejas-Villar N, Schweizer U, Zischka H, Friedmann Angeli JP, Conrad M (2018) Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172(3):409-422.e421. https://doi.org/10.1016/j.cell.2017.11.048

    Article  CAS  PubMed  Google Scholar 

  27. Zhu J, Berisa M, Schworer S, Qin W, Cross JR, Thompson CB (2019) Transsulfuration activity can support cell growth upon extracellular cysteine limitation. Cell Metab 30(5):865-876.e865. https://doi.org/10.1016/j.cmet.2019.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Koppula P, Zhang Y, Zhuang L, Gan B (2018) Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun (Lond) 38(1):12. https://doi.org/10.1186/s40880-018-0288-x

    Article  Google Scholar 

  29. Seibt TM, Proneth B, Conrad M (2019) Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med 133:144–152. https://doi.org/10.1016/j.freeradbiomed.2018.09.014

    Article  CAS  PubMed  Google Scholar 

  30. Sehm T, Fan Z, Ghoochani A, Rauh M, Engelhorn T, Minakaki G, Dorfler A, Klucken J, Buchfelder M, Eyupoglu IY, Savaskan N (2016) Sulfasalazine impacts on ferroptotic cell death and alleviates the tumor microenvironment and glioma-induced brain edema. Oncotarget 7(24):36021–36033. https://doi.org/10.18632/oncotarget.8651

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lachaier E, Louandre C, Godin C, Saidak Z, Baert M, Diouf M, Chauffert B, Galmiche A (2014) Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors. Anticancer Res 34(11):6417–6422

    CAS  PubMed  Google Scholar 

  32. Louandre C, Ezzoukhry Z, Godin C, Barbare JC, Maziere JC, Chauffert B, Galmiche A (2013) Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int J Cancer 133(7):1732–1742. https://doi.org/10.1002/ijc.28159

    Article  CAS  PubMed  Google Scholar 

  33. Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, Thomas AG, Gleason CE, Tatonetti NP, Slusher BS, Stockwell BR (2014) Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife 3:e02523. https://doi.org/10.7554/eLife.02523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, Brown LM, Girotti AW, Cornish VW, Schreiber SL, Stockwell BR (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1–2):317–331. https://doi.org/10.1016/j.cell.2013.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang WS, Stockwell BR (2016) Ferroptosis: death by lipid peroxidation. Trends Cell Biol 26(3):165–176. https://doi.org/10.1016/j.tcb.2015.10.014

    Article  CAS  PubMed  Google Scholar 

  36. Friedmann Angeli JP, Conrad M (2018) Selenium and GPX4, a vital symbiosis. Free Radic Biol Med 127:153–159. https://doi.org/10.1016/j.freeradbiomed.2018.03.001

    Article  CAS  PubMed  Google Scholar 

  37. Mullen PJ, Yu R, Longo J, Archer MC, Penn LZ (2016) The interplay between cell signalling and the mevalonate pathway in cancer. Nat Rev Cancer 16(11):718–731. https://doi.org/10.1038/nrc.2016.76

    Article  CAS  PubMed  Google Scholar 

  38. Hadian K (2020) Ferroptosis suppressor protein 1 (FSP1) and coenzyme Q10 cooperatively suppress ferroptosis. Biochemistry 59(5):637–638. https://doi.org/10.1021/acs.biochem.0c00030

    Article  CAS  PubMed  Google Scholar 

  39. Gao M, Monian P, Quadri N, Ramasamy R, Jiang X (2015) Glutaminolysis and transferrin regulate ferroptosis. Mol Cell 59(2):298–308. https://doi.org/10.1016/j.molcel.2015.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gao M, Yi J, Zhu J, Minikes AM, Monian P, Thompson CB, Jiang X (2019) Role of mitochondria in ferroptosis. Mol Cell 73(2):354-363 e353. https://doi.org/10.1016/j.molcel.2018.10.042

    Article  CAS  PubMed  Google Scholar 

  41. Ma Q (2013) Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426. https://doi.org/10.1146/annurev-pharmtox-011112-140320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kerins MJ, Ooi A (2018) The roles of NRF2 in modulating cellular iron homeostasis. Antioxid Redox Signal 29(17):1756–1773. https://doi.org/10.1089/ars.2017.7176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, Tang D (2016) Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 63(1):173–184. https://doi.org/10.1002/hep.28251

    Article  CAS  PubMed  Google Scholar 

  44. Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830(5):3143–3153. https://doi.org/10.1016/j.bbagen.2012.09.008

    Article  CAS  PubMed  Google Scholar 

  45. Dodson M, Castro-Portuguez R, Zhang DD (2019) NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol 23:101107. https://doi.org/10.1016/j.redox.2019.101107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brown CW, Amante JJ, Goel HL, Mercurio AM (2017) The α6β4 integrin promotes resistance to ferroptosis. J Cell Biol 216(12):4287–4297. https://doi.org/10.1083/jcb.201701136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brown CW, Amante JJ, Mercurio AM (2018) Cell clustering mediated by the adhesion protein PVRL4 is necessary for alpha6beta4 integrin-promoted ferroptosis resistance in matrix-detached cells. J Biol Chem 293(33):12741–12748. https://doi.org/10.1074/jbc.RA118.003017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen MS, Wang SF, Hsu CY, Yin PH, Yeh TS, Lee HC, Tseng LM (2017) CHAC1 degradation of glutathione enhances cystine-starvation-induced necroptosis and ferroptosis in human triple negative breast cancer cells via the GCN2-eIF2α-ATF4 pathway. Oncotarget 8(70):114588–114602. https://doi.org/10.18632/oncotarget.23055

    Article  PubMed  PubMed Central  Google Scholar 

  49. Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40(2):253–266. https://doi.org/10.1016/j.molcel.2010.10.006

    Article  CAS  PubMed  Google Scholar 

  50. Sun X, Ou Z, Xie M, Kang R, Fan Y, Niu X, Wang H, Cao L, Tang D (2015) HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene 34(45):5617–5625. https://doi.org/10.1038/onc.2015.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhu S, Zhang Q, Sun X, Zeh HJ III, Lotze MT, Kang R, Tang D (2017) HSPA5 regulates ferroptotic cell death in cancer cells. Cancer Res 77(8):2064–2077. https://doi.org/10.1158/0008-5472.Can-16-1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. White E, Mehnert JM, Chan CS (2015) Autophagy, metabolism, and cancer. Clin Cancer Res Off J Am Assoc Cancer Res 21(22):5037–5046. https://doi.org/10.1158/1078-0432.Ccr-15-0490

    Article  CAS  Google Scholar 

  53. Huang T, Song X, Yang Y, Wan X, Alvarez AA, Sastry N, Feng H, Hu B, Cheng SY (2018) Autophagy and hallmarks of cancer. Crit Rev Oncog 23(5–6):247–267. https://doi.org/10.1615/CritRevOncog.2018027913

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wong RS (2011) Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 30:87. https://doi.org/10.1186/1756-9966-30-87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Najafov A, Chen H, Yuan J (2017) Necroptosis and cancer. Trends Cancer 3(4):294–301. https://doi.org/10.1016/j.trecan.2017.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ma S, Henson ES, Chen Y, Gibson SB (2016) Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis 7(7):e2307. https://doi.org/10.1038/cddis.2016.208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Woo SM, Seo SU, Min KJ, Im SS, Nam JO, Chang JS, Kim S, Park JW, Kwon TK (2018) Corosolic acid induces non-apoptotic cell death through generation of lipid reactive oxygen species production in human renal carcinoma Caki cells. Int J Mol Sci. https://doi.org/10.3390/ijms19051309

    Article  PubMed  PubMed Central  Google Scholar 

  58. Alvarez SW, Sviderskiy VO, Terzi EM, Papagiannakopoulos T, Moreira AL, Adams S, Sabatini DM, Birsoy K, Possemato R (2017) NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 551(7682):639–643. https://doi.org/10.1038/nature24637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Eling N, Reuter L, Hazin J, Hamacher-Brady A, Brady NR (2015) Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience 2(5):517–532. https://doi.org/10.18632/oncoscience.160

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kinowaki Y, Kurata M, Ishibashi S, Ikeda M, Tatsuzawa A, Yamamoto M, Miura O, Kitagawa M, Yamamoto K (2018) Glutathione peroxidase 4 overexpression inhibits ROS-induced cell death in diffuse large B-cell lymphoma. Lab Investig 98(5):609–619. https://doi.org/10.1038/s41374-017-0008-1

    Article  CAS  PubMed  Google Scholar 

  61. Ye J, Jiang X, Dong Z, Hu S, Xiao M (2019) Low-concentration PTX And RSL3 inhibits tumor cell growth synergistically by inducing ferroptosis In mutant p53 hypopharyngeal squamous carcinoma. Cancer Manag Res 11:9783–9792. https://doi.org/10.2147/cmar.S217944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nie J, Lin B, Zhou M, Wu L, Zheng T (2018) Role of ferroptosis in hepatocellular carcinoma. J Cancer Res Clin Oncol 144(12):2329–2337. https://doi.org/10.1007/s00432-018-2740-3

    Article  CAS  PubMed  Google Scholar 

  63. Wan C, Sun Y, Tian Y, Lu L, Dai X, Meng J, Huang J, He Q, Wu B, Zhang Z, Jiang K, Hu D, Wu G, Lovell JF, Jin H, Yang K (2020) Irradiated tumor cell-derived microparticles mediate tumor eradication via cell killing and immune reprogramming. Sci Adv 6(13):eaay9789. https://doi.org/10.1126/sciadv.aay9789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kaiser AM, Attardi LD (2018) Deconstructing networks of p53-mediated tumor suppression in vivo. Cell Death Differ 25(1):93–103. https://doi.org/10.1038/cdd.2017.171

    Article  CAS  PubMed  Google Scholar 

  65. Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y, Baer R, Gu W (2012) Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149(6):1269–1283. https://doi.org/10.1016/j.cell.2012.04.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R, Gu W (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520(7545):57–62. https://doi.org/10.1038/nature14344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ou Y, Wang SJ, Li D, Chu B, Gu W (2016) Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci USA 113(44):E6806–E6812. https://doi.org/10.1073/pnas.1607152113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Xie Y, Zhu S, Song X, Sun X, Fan Y, Liu J, Zhong M, Yuan H, Zhang L, Billiar TR, Lotze MT, Zeh HJ III, Kang R, Kroemer G, Tang D (2017) The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep 20(7):1692–1704. https://doi.org/10.1016/j.celrep.2017.07.055

    Article  CAS  PubMed  Google Scholar 

  69. Tarangelo A, Magtanong L, Bieging-Rolett KT, Li Y, Ye J, Attardi LD, Dixon SJ (2018) p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep 22(3):569–575. https://doi.org/10.1016/j.celrep.2017.12.077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hombach S, Kretz M (2016) Non-coding RNAs: classification, biology and functioning. Adv Exp Med Biol 937:3–17. https://doi.org/10.1007/978-3-319-42059-2_1

    Article  CAS  PubMed  Google Scholar 

  71. Sanchez Calle A, Kawamura Y, Yamamoto Y, Takeshita F, Ochiya T (2018) Emerging roles of long non-coding RNA in cancer. Cancer Sci 109(7):2093–2100. https://doi.org/10.1111/cas.13642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang M, Mao C, Ouyang L, Liu Y, Lai W, Liu N, Shi Y, Chen L, Xiao D, Yu F, Wang X, Zhou H, Cao Y, Liu S, Yan Q, Tao Y, Zhang B (2019) Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA. Cell Death Differ 26(11):2329–2343. https://doi.org/10.1038/s41418-019-0304-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hayano M, Yang WS, Corn CK, Pagano NC, Stockwell BR (2016) Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation. Cell Death Differ 23(2):270–278. https://doi.org/10.1038/cdd.2015.93

    Article  CAS  PubMed  Google Scholar 

  74. Mao C, Wang X, Liu Y, Wang M, Yan B, Jiang Y, Shi Y, Shen Y, Liu X, Lai W, Yang R, Xiao D, Cheng Y, Liu S, Zhou H, Cao Y, Yu W, Muegge K, Yu H, Tao Y (2018) A G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53. Cancer Res 78(13):3484–3496. https://doi.org/10.1158/0008-5472.Can-17-3454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ying SY, Chang DC, Lin SL (2018) The microRNA. Methods Mol Biol (Clifton NJ) 1733:1–25. https://doi.org/10.1007/978-1-4939-7601-0_1

    Article  CAS  Google Scholar 

  76. Luo M, Wu L, Zhang K, Wang H, Zhang T, Gutierrez L, O’Connell D, Zhang P, Li Y, Gao T, Ren W, Yang Y (2018) miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma. Cell Death Differ 25(8):1457–1472. https://doi.org/10.1038/s41418-017-0053-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bai T, Liang R, Zhu R, Wang W, Zhou L, Sun Y (2020) MicroRNA-214-3p enhances erastin-induced ferroptosis by targeting ATF4 in hepatoma cells. J Cell Physiol. https://doi.org/10.1002/jcp.29496

    Article  PubMed  Google Scholar 

  78. Chen D, Fan Z, Rauh M, Buchfelder M, Eyupoglu IY, Savaskan N (2017) ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. Oncogene 36(40):5593–5608. https://doi.org/10.1038/onc.2017.146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Patop IL, Wüst S, Kadener S (2019) Past, present, and future of circRNAs. EMBO J 38(16):e100836. https://doi.org/10.15252/embj.2018100836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang HY, Zhang BW, Zhang ZB, Deng QJ (2020) Circular RNA TTBK2 regulates cell proliferation, invasion and ferroptosis via miR-761/ITGB8 axis in glioma. Eur Rev Med Pharmacol Sci 24(5):2585–2600. https://doi.org/10.26355/eurrev_202003_20528

    Article  PubMed  Google Scholar 

  81. Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, Hu G, Sun Y (2015) New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med 13:45. https://doi.org/10.1186/s12916-015-0278-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, Vonderheide RH, Pittet MJ, Jain RK, Zou W, Howcroft TK, Woodhouse EC, Weinberg RA, Krummel MF (2018) Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 24(5):541–550. https://doi.org/10.1038/s41591-018-0014-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dai E, Han L, Liu J, Xie Y, Kroemer G, Klionsky DJ, Zeh HJ, Kang R, Wang J, Tang D (2020) Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy. https://doi.org/10.1080/15548627.2020.1714209

    Article  PubMed  PubMed Central  Google Scholar 

  84. Labiano S, Palazon A, Melero I (2015) Immune response regulation in the tumor microenvironment by hypoxia. Semin Oncol 42(3):378–386. https://doi.org/10.1053/j.seminoncol.2015.02.009

    Article  CAS  PubMed  Google Scholar 

  85. Zou Y, Palte MJ, Deik AA, Li H, Eaton JK, Wang W, Tseng YY, Deasy R, Kost-Alimova M, Dancik V, Leshchiner ES, Viswanathan VS, Signoretti S, Choueiri TK, Boehm JS, Wagner BK, Doench JG, Clish CB, Clemons PA, Schreiber SL (2019) A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat Commun 10(1):1617. https://doi.org/10.1038/s41467-019-09277-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li Z, Jiang L, Chew SH, Hirayama T, Sekido Y, Toyokuni S (2019) Carbonic anhydrase 9 confers resistance to ferroptosis/apoptosis in malignant mesothelioma under hypoxia. Redox Biol 26:101297. https://doi.org/10.1016/j.redox.2019.101297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G (2016) Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging 8(4):603–619. https://doi.org/10.18632/aging.100934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Olechowska-Jarząb A, Ptak-Belowska A, Brzozowski T (2016) Therapeutic importance of apoptosis pathways in pancreatic cancer. Folia med Crac 56(1):61–70

    Google Scholar 

  89. Louandre C, Marcq I, Bouhlal H, Lachaier E, Godin C, Saidak Z, François C, Chatelain D, Debuysscher V, Barbare JC, Chauffert B, Galmiche A (2015) The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett 356(2 Pt B):971–977. https://doi.org/10.1016/j.canlet.2014.11.014

    Article  CAS  PubMed  Google Scholar 

  90. Sun X, Niu X, Chen R, He W, Chen D, Kang R, Tang D (2016) Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology 64(2):488–500. https://doi.org/10.1002/hep.28574

    Article  CAS  PubMed  Google Scholar 

  91. Pouillon L, Bossuyt P, Vanderstukken J, Moulin D, Netter P, Danese S, Jouzeau JY, Loeuille D, Peyrin-Biroulet L (2017) Management of patients with inflammatory bowel disease and spondyloarthritis. Expert Rev Clin Pharmacol 10(12):1363–1374. https://doi.org/10.1080/17512433.2017.1377609

    Article  CAS  PubMed  Google Scholar 

  92. Sleire L, Skeie BS, Netland IA, Førde HE, Dodoo E, Selheim F, Leiss L, Heggdal JI, Pedersen PH, Wang J, Enger P (2015) Drug repurposing: sulfasalazine sensitizes gliomas to gamma knife radiosurgery by blocking cystine uptake through system Xc-, leading to glutathione depletion. Oncogene 34(49):5951–5959. https://doi.org/10.1038/onc.2015.60

    Article  CAS  PubMed  Google Scholar 

  93. Lo M, Ling V, Low C, Wang YZ, Gout PW (2010) Potential use of the anti-inflammatory drug, sulfasalazine, for targeted therapy of pancreatic cancer. Curr Oncol (Tor Ont) 17(3):9–16. https://doi.org/10.3747/co.v17i3.485

    Article  CAS  Google Scholar 

  94. Kim EH, Shin D, Lee J, Jung AR, Roh JL (2018) CISD2 inhibition overcomes resistance to sulfasalazine-induced ferroptotic cell death in head and neck cancer. Cancer Lett 432:180–190. https://doi.org/10.1016/j.canlet.2018.06.018

    Article  CAS  PubMed  Google Scholar 

  95. Zhu S, Yu Q, Huo C, Li Y, He L, Ran B, Chen J, Li Y, Liu W (2020) Ferroptosis: a novel mechanism of artemisinin and its derivatives in cancer therapy. Curr Med Chem. https://doi.org/10.2174/0929867327666200121124404

    Article  PubMed  Google Scholar 

  96. Roh JL, Kim EH, Jang H, Shin D (2017) Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol 11:254–262. https://doi.org/10.1016/j.redox.2016.12.010

    Article  CAS  PubMed  Google Scholar 

  97. Shen Z, Song J, Yung BC, Zhou Z, Wu A, Chen X (2018) Emerging strategies of cancer therapy based on ferroptosis. Adv Mater 30(12):e1704007. https://doi.org/10.1002/adma.201704007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sarkar B, Paira P (2018) Theranostic aspects: treatment of cancer by nanotechnology. Mini Rev Med Chem 18(11):969–975. https://doi.org/10.2174/1389557518666171129214336

    Article  CAS  PubMed  Google Scholar 

  99. Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60(15):1615–1626. https://doi.org/10.1016/j.addr.2008.08.005

    Article  CAS  PubMed  Google Scholar 

  100. Shen Z, Wu H, Yang S, Ma X, Li Z, Tan M, Wu A (2015) A novel Trojan-horse targeting strategy to reduce the non-specific uptake of nanocarriers by non-cancerous cells. Biomaterials 70:1–11. https://doi.org/10.1016/j.biomaterials.2015.08.022

    Article  CAS  PubMed  Google Scholar 

  101. Bazak R, Houri M, Achy SE, Hussein W, Refaat T (2014) Passive targeting of nanoparticles to cancer: a comprehensive review of the literature. Mol Clin Oncol 2(6):904–908. https://doi.org/10.3892/mco.2014.356

    Article  PubMed  PubMed Central  Google Scholar 

  102. Guan Q, Guo R, Huang S, Zhang F, Liu J, Wang Z, Yang X, Shuai X, Cao Z (2020) Mesoporous polydopamine carrying sorafenib and SPIO nanoparticles for MRI-guided ferroptosis cancer therapy. J Control Release Off J Control Release Soc 320:392–403. https://doi.org/10.1016/j.jconrel.2020.01.048

    Article  CAS  Google Scholar 

  103. An P, Gao Z, Sun K, Gu D, Wu H, You C, Li Y, Cheng K, Zhang Y, Wang Z, Sun B (2019) Photothermal-enhanced inactivation of glutathione peroxidase for ferroptosis sensitized by an autophagy promotor. ACS Appl Mater Interfaces 11(46):42988–42997. https://doi.org/10.1021/acsami.9b16124

    Article  CAS  PubMed  Google Scholar 

  104. Qin J, Xu Q (2014) Functions and application of exosomes. Acta pol pharm 71(4):537–543

    PubMed  Google Scholar 

  105. Kibria G, Ramos EK, Wan Y, Gius DR, Liu H (2018) Exosomes as a drug delivery system in cancer therapy: potential and challenges. Mol Pharm 15(9):3625–3633. https://doi.org/10.1021/acs.molpharmaceut.8b00277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yu M, Gai C, Li Z, Ding D, Zheng J, Zhang W, Lv S, Li W (2019) Targeted exosome-encapsulated erastin induced ferroptosis in triple negative breast cancer cells. Cancer Sci 110(10):3173–3182. https://doi.org/10.1111/cas.14181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Brown CW, Amante JJ, Chhoy P, Elaimy AL, Liu H, Zhu LJ, Baer CE, Dixon SJ, Mercurio AM (2019) Prominin2 drives ferroptosis resistance by stimulating iron export. Dev Cell 51(5):575-586 e574. https://doi.org/10.1016/j.devcel.2019.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Duval K, Grover H, Han LH, Mou Y, Pegoraro AF, Fredberg J, Chen Z (2017) Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda Md) 32(4):266–277. https://doi.org/10.1152/physiol.00036.2016

    Article  CAS  Google Scholar 

  109. Demuynck R, Efimova I, Lin A, Declercq H, Krysko DV (2020) A 3D cell death assay to quantitatively determine ferroptosis in spheroids. Cells. https://doi.org/10.3390/cells9030703

    Article  PubMed  PubMed Central  Google Scholar 

  110. Imai H, Hirao F, Sakamoto T, Sekine K, Mizukura Y, Saito M, Kitamoto T, Hayasaka M, Hanaoka K, Nakagawa Y (2003) Early embryonic lethality caused by targeted disruption of the mouse PHGPx gene. Biochem Biophys Res Commun 305(2):278–286. https://doi.org/10.1016/s0006-291x(03)00734-4

    Article  CAS  PubMed  Google Scholar 

  111. Ran Q, Gu M, Van Remmen H, Strong R, Roberts JL, Richardson A (2006) Glutathione peroxidase 4 protects cortical neurons from oxidative injury and amyloid toxicity. J Neurosci Res 84(1):202–208. https://doi.org/10.1002/jnr.20868

    Article  CAS  PubMed  Google Scholar 

  112. Wang W, Green M, Choi JE, Gijon M, Kennedy PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A, Xia H, Zhou J, Li G, Li J, Li W, Wei S, Vatan L, Zhang H, Szeliga W, Gu W, Liu R, Lawrence TS, Lamb C, Tanno Y, Cieslik M, Stone E, Georgiou G, Chan TA, Chinnaiyan A, Zou W (2019) CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569(7755):270–274. https://doi.org/10.1038/s41586-019-1170-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 81672675, 81872211), the 111 Project of MOE China (Grant No. B14038) and the CAMS Innovation Fund for Medical Sciences (2019-I2M-5-004).

Author information

Authors and Affiliations

Authors

Contributions

YW performed the literature search, YW, JL, ZW, and KP wrote the manuscript and designed the figures; JL and QC provided guidance and revised this manuscript. All authors approved the final manuscript.

Corresponding author

Correspondence to Jing Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wei, Z., Pan, K. et al. The function and mechanism of ferroptosis in cancer. Apoptosis 25, 786–798 (2020). https://doi.org/10.1007/s10495-020-01638-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-020-01638-w

Keywords

Navigation