Skip to main content

Advertisement

Log in

Modulation of CD95-mediated signaling by post-translational modifications: towards understanding CD95 signaling networks

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

CD95 is a member of the death receptor family and is well-known to promote apoptosis. However, accumulating evidence indicates that in some context CD95 has not only the potential to induce apoptosis but also can trigger non-apoptotic signal leading to cell survival, proliferation, cancer growth and metastasis. Despite extensive investigations focused on alterations in the expression level of CD95 and associated signal molecules, very few studies, however, have investigated the effects of post-translational modifications such as glycosylation, phosphorylation, palmitoylation, nitrosylation and glutathionylation on CD95 function. Post-translational modifications of CD95 in mammalian systems are likely to play a more prominent role than anticipated in CD95 induced cell death. In this review we will focus on the alterations in CD95-mediated signaling caused by post-translational modifications of CD95.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DR:

Death receptor

TNF-R:

Tumor necrosis factor receptor

CD95:

Cluster of differentiation 95

FADD:

Fas-associated protein with death domain

c-FLIP:

Cellular FLICE inhibitory protein

DISC:

Death-inducing signaling complex

DD:

Death domain

DED:

Death effector domain

MOMP:

Mitochondrial outer membrane permeabilisation

Bid:

BH3 interacting-domain death agonist

tBid:

Truncated Bid

ERK:

Extracellular signal-regulated kinase

NF-κB:

Nuclear factor κB

CD95L:

CD95 ligand

CRD:

Cysteine-rich domain

NK:

Natural killer

EGFR:

Epidermal growth factor receptor

EGF:

Epidermal growth factor

pEGFR:

Phosphorylated EGFR

pSTAT3:

Phosphorylated STAT3

SHP-1:

Src homology domain 2 (SH2)-containing tyrosine phosphatase-1

NO:

Nitric oxide

References

  1. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Igney FH, Krammer PH (2002) Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2:277–288

    Article  CAS  PubMed  Google Scholar 

  3. Lavrik I, Golks A, Krammer PH (2005) Death receptor signaling. J Cell Sci 118:265–267

    Article  CAS  PubMed  Google Scholar 

  4. Gloire G, Charlier E, Piette J (2008) Regulation of CD95/APO-1/Fas-induced apoptosis by protein phosphatases. Biochem Pharmacol 76:1451–1458

    Article  CAS  PubMed  Google Scholar 

  5. Sessler T, Healy S, Samali A, Szegezdi E (2013) Structural determinants of DISC function: new insights into death receptor-mediated apoptosis signalling. Pharmacol Ther 140:186–199

    Article  CAS  PubMed  Google Scholar 

  6. Schulte M, Reiss K, Lettau M et al (2007) ADAM10 regulates FasL cell surface expression and modulates FasL-induced cytotoxicity and activation-induced cell death. Cell Death Differ 14:1040–1049

    Article  CAS  PubMed  Google Scholar 

  7. Kischkel FC, Hellbardt S, Behrmann I et al (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14:5579–5588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Algeciras-Schimnich A, Griffith TS, Lynch DH, Paya CV (1999) Cell cycle-dependent regulation of FLIP levels and susceptibility to Fas-mediated apoptosis. J Immunol 162:5205–5211

    CAS  PubMed  Google Scholar 

  9. Thome M, Schneider P, Hofmann K et al (1997) Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386:517–521

    Article  CAS  PubMed  Google Scholar 

  10. Dickens LS, Boyd RS, Jukes-Jones R et al (2012) A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death. Mol Cell 47:291–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schleich K, Warnken U, Fricker N et al (2012) Stoichiometry of the CD95 death-inducing signaling complex: experimental and modeling evidence for a death effector domain chain model. Mol Cell 47:306–319

    Article  CAS  PubMed  Google Scholar 

  12. Krammer PH, Arnold R, Lavrik IN (2007) Life and death in peripheral T cells. Nat Rev Immunol 7:532–542

    Article  CAS  PubMed  Google Scholar 

  13. Scaffidi C, Medema JP, Krammer PH, Peter ME (1997) FLICE is predominantly expressed as two functionally active isoforms, caspase-8/a and caspase-8/b. J Biol Chem 272:26953–26958

    Article  CAS  PubMed  Google Scholar 

  14. Golks A, Brenner D, Krammer PH, Lavrik IN (2006) The c-FLIP-NH2 terminus (p22-FLIP) induces NF-kappaB activation. J Exp Med 203:1295–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hoffmann JC, Pappa A, Krammer PH, Lavrik IN (2009) A new C-terminal cleavage product of procaspase-8, p30, defines an alternative pathway of procaspase-8 activation. Mol Cell Biol 29:4431–4440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Golks A, Brenner D, Schmitz I et al (2006) The role of CAP3 in CD95 signaling: new insights into the mechanism of procaspase-8 activation. Cell Death Differ 13(3):489–498

    Article  CAS  PubMed  Google Scholar 

  17. Charlier E, Conde C, Zhang J et al (2010) SHIP-1 inhibits CD95/APO-1/Fas-induced apoptosis in primary T lymphocytes and T leukemic cells by promoting CD95 glycosylation independently of its phosphatase activity. Leukemia 24:821–832

    Article  CAS  PubMed  Google Scholar 

  18. Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH (2000) Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 7:1166–1173

    Article  CAS  PubMed  Google Scholar 

  19. Lavrik IN, Golks A, Riess D, Bentele M, Eils R, Krammer PH (2007) Analysis of CD95 threshold signaling: triggering of CD95 (FAS/APO-1) at low concentrations primarily results in survival signaling. J Biol Chem 282:13664–13671

    Article  CAS  PubMed  Google Scholar 

  20. Hayden MS, Ghosh S (2012) NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 26:203–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cullen SP, Henry CM, Kearney CJ et al (2013) Fas/CD95-induced chemokines can serve as “find-me” signals for apoptotic cells. Mol Cell 49:1034–1048

    Article  CAS  PubMed  Google Scholar 

  22. Kennedy NJ, Kataoka T, Tschopp J, Budd RC (1999) Caspase activation is required for T cell proliferation. J Exp Med 190:1891–1896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lavrik IN (2014) Systems biology of death receptor networks: live and let die. Cell Death Dis 5:e1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Newton K, Harris AW, Bath ML, Smith KG, Strasser A (1998) A dominant interfering mutant of FADD/MORT1 enhances deletion of autoreactive thymocytes and inhibits proliferation of mature T lymphocytes. EMBO J 17:706–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barnhart BC, Legembre P, Pietras E, Bubici C, Franzoso G, Peter ME (2004) CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells. EMBO J 23:3175–3185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bentele M, Lavrik I, Ulrich M et al (2004) Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis. J Cell Biol 166:839–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Buchbinder JH, Pischel D, Sundmacher K, Flassig RJ, Lavrik IN (2018) Quantitative single cell analysis uncovers the life/death decision in CD95 network. PLoS Comput Biol 14:e1006368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Neumann L, Pforr C, Beaudouin J et al (2010) Dynamics within the CD95 death-inducing signaling complex decide life and death of cells. Mol Syst Biol 6:352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Siegmund D, Lang I, Wajant H (2017) Cell death-independent activities of the death receptors CD95, TRAILR1, and TRAILR2. FEBS J 284:1131–1159

    Article  CAS  PubMed  Google Scholar 

  30. Yuan K, Jing G, Chen J et al (2011) Calmodulin mediates Fas-induced FADD-independent survival signaling in pancreatic cancer cells via activation of Src-extracellular signal-regulated kinase (ERK). J Biol Chem 286:24776–24784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lavrik IN, Krammer PH (2012) Regulation of CD95/Fas signaling at the DISC. Cell Death Differ 19:36–41

    Article  CAS  PubMed  Google Scholar 

  32. Feig C, Tchikov V, Schutze S, Peter ME (2007) Palmitoylation of CD95 facilitates formation of SDS-stable receptor aggregates that initiate apoptosis signaling. EMBO J 26:221–231

    Article  CAS  PubMed  Google Scholar 

  33. Jin Z, Li Y, Pitti R et al (2009) Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell 137:721–735

    Article  CAS  PubMed  Google Scholar 

  34. Very N, Lefebvre T, El Yazidi-Belkoura I (2018) Drug resistance related to aberrant glycosylation in colorectal cancer. Oncotarget 9:1380–1402

    Article  PubMed  Google Scholar 

  35. Munkley J, Elliott DJ (2016) Hallmarks of glycosylation in cancer. Oncotarget 7:35478–35489

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ferreira JA, Magalhaes A, Gomes J et al (2017) Protein glycosylation in gastric and colorectal cancers: toward cancer detection and targeted therapeutics. Cancer Lett 387:32–45

    Article  CAS  PubMed  Google Scholar 

  37. Li Y, Yang X, Nguyen AH, Brockhausen I (2007) Requirement of N-glycosylation for the secretion of recombinant extracellular domain of human Fas in HeLa cells. Int J Biochem Cell Biol 39:1625–1636

    Article  CAS  PubMed  Google Scholar 

  38. Brockhausen I (2006) The role of galactosyltransferases in cell surface functions and in the immune system. Drug News Perspect 19:401–409

    Article  CAS  PubMed  Google Scholar 

  39. Peter ME, Hellbardt S, Schwartz-Albiez R et al (1995) Cell surface sialylation plays a role in modulating sensitivity towards APO-1-mediated apoptotic cell death. Cell Death Differ 2:163–171

    CAS  PubMed  Google Scholar 

  40. Shatnyeva OM, Kubarenko AV, Weber CE et al (2011) Modulation of the CD95-induced apoptosis: the role of CD95 N-glycosylation. PLoS ONE 6:e19927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Garcia-Fuster MJ, Ferrer-Alcon M, Miralles A, Garcia-Sevilla JA (2004) Deglycosylation of Fas receptor and chronic morphine treatment up-regulate high molecular mass Fas aggregates in the rat brain. Eur J Pharmacol 496:63–69

    Article  CAS  PubMed  Google Scholar 

  42. Lichtenstein RG, Rabinovich GA (2013) Glycobiology of cell death: when glycans and lectins govern cell fate. Cell Death Differ 20:976–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Keppler OT, Peter ME, Hinderlich S et al (1999) Differential sialylation of cell surface glycoconjugates in a human B lymphoma cell line regulates susceptibility for CD95 (APO-1/Fas)-mediated apoptosis and for infection by a lymphotropic virus. Glycobiology 9:557–569

    Article  CAS  PubMed  Google Scholar 

  44. Swindall AF, Bellis SL (2011) Sialylation of the Fas death receptor by ST6Gal-I provides protection against Fas-mediated apoptosis in colon carcinoma cells. J Biol Chem 286:22982–22990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ta NL, Chakrabandhu K, Huault S, Hueber AO (2018) The tyrosine phosphorylated pro-survival form of Fas intensifies the EGF-induced signal in colorectal cancer cells through the nuclear EGFR/STAT3-mediated pathway. Sci Rep 8:12424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chakrabandhu K, Hueber AO (2016) Fas versatile signaling and beyond: pivotal role of tyrosine phosphorylation in context-dependent signaling and diseases. Front Immunol 7:429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Corsini NS, Sancho-Martinez I, Laudenklos S et al (2009) The death receptor CD95 activates adult neural stem cells for working memory formation and brain repair. Cell Stem Cell 5:178–190

    Article  CAS  PubMed  Google Scholar 

  48. Kleber S, Sancho-Martinez I, Wiestler B et al (2008) Yes and PI3 K bind CD95 to signal invasion of glioblastoma. Cancer Cell 13:235–248

    Article  CAS  PubMed  Google Scholar 

  49. Letellier E, Kumar S, Sancho-Martinez I et al (2010) CD95-ligand on peripheral myeloid cells activates Syk kinase to trigger their recruitment to the inflammatory site. Immunity 32:240–252

    Article  CAS  PubMed  Google Scholar 

  50. Sancho-Martinez I, Martin-Villalba A (2009) Tyrosine phosphorylation and CD95: a FAScinating switch. Cell Cycle 8:838–842

    Article  CAS  PubMed  Google Scholar 

  51. Chakrabandhu K, Huault S, Durivault J et al (2016) An evolution-guided analysis reveals a multi-signaling regulation of fas by tyrosine phosphorylation and its implication in human cancers. PLoS Biol 14:e1002401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Su X, Zhou T, Wang Z, Yang P, Jope RS, Mountz JD (1995) Defective expression of hematopoietic cell protein tyrosine phosphatase (HCP) in lymphoid cells blocks Fas-mediated apoptosis. Immunity 2:353–362

    Article  CAS  PubMed  Google Scholar 

  53. Daigle I, Yousefi S, Colonna M, Green DR, Simon HU (2002) Death receptors bind SHP-1 and block cytokine-induced anti-apoptotic signaling in neutrophils. Nat Med 8:61–67

    Article  CAS  PubMed  Google Scholar 

  54. Duchesne C, Charland S, Asselin C, Nahmias C, Rivard N (2003) Negative regulation of beta-catenin signaling by tyrosine phosphatase SHP-1 in intestinal epithelial cells. J Biol Chem 278:14274–14283

    Article  CAS  PubMed  Google Scholar 

  55. Singer BB, Klaile E, Scheffrahn I et al (2005) CEACAM1 (CD66a) mediates delay of spontaneous and Fas ligand-induced apoptosis in granulocytes. Eur J Immunol 35:1949–1959

    Article  CAS  PubMed  Google Scholar 

  56. Eberle A, Reinehr R, Becker S, Haussinger D (2005) Fluorescence resonance energy transfer analysis of proapoptotic CD95-EGF receptor interactions in Huh7 cells. Hepatology 41:315–326

    Article  CAS  PubMed  Google Scholar 

  57. Eberle A, Reinehr R, Becker S, Keitel V, Haussinger D (2007) CD95 tyrosine phosphorylation is required for CD95 oligomerization. Apoptosis 12:719–729

    Article  CAS  PubMed  Google Scholar 

  58. Dietrich LE, Ungermann C (2004) On the mechanism of protein palmitoylation. EMBO Rep 5:1053–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Blaskovic S, Blanc M, van der Goot FG (2013) What does S-palmitoylation do to membrane proteins? FEBS J 280:2766–2774

    Article  CAS  PubMed  Google Scholar 

  60. Rossin A, Durivault J, Chakhtoura-Feghali T, Lounnas N, Gagnoux-Palacios L, Hueber AO (2015) Fas palmitoylation by the palmitoyl acyltransferase DHHC7 regulates Fas stability. Cell Death Differ 22:643–653

    Article  CAS  PubMed  Google Scholar 

  61. Chakrabandhu K, Herincs Z, Huault S et al (2007) Palmitoylation is required for efficient Fas cell death signaling. EMBO J 26:209–220

    Article  CAS  PubMed  Google Scholar 

  62. Ramaswamy M, Cleland SY, Cruz AC, Siegel RM (2009) Many checkpoints on the road to cell death: regulation of Fas-FasL interactions and Fas signaling in peripheral immune responses. Results Prob Cell Differ 49:17–47

    Article  CAS  Google Scholar 

  63. Yurchenko M, Shlapatska LM, Sidorenko SP (2012) The multilevel regulation of CD95 signaling outcome. Exp Oncol 34:153–159

    CAS  PubMed  Google Scholar 

  64. Mollinedo F, Gajate C (2006) Fas/CD95 death receptor and lipid rafts: new targets for apoptosis-directed cancer therapy. Drug Resist Updat 9:51–73

    Article  CAS  PubMed  Google Scholar 

  65. Pennarun B, Meijer A, de Vries EG, Kleibeuker JH, Kruyt F, de Jong S (2010) Playing the DISC: turning on TRAIL death receptor-mediated apoptosis in cancer. Biochim Biophys Acta 1805:123–140

    CAS  PubMed  Google Scholar 

  66. Muppidi JR, Siegel RM (2004) Ligand-independent redistribution of Fas (CD95) into lipid rafts mediates clonotypic T cell death. Nat Immunol 5:182–189

    Article  CAS  PubMed  Google Scholar 

  67. Iyer AK, Azad N, Wang L, Rojanasakul Y (2008) Role of S-nitrosylation in apoptosis resistance and carcinogenesis. Nitric Oxide 19:146–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Leon-Bollotte L, Subramaniam S, Cauvard O et al (2011) S-nitrosylation of the death receptor fas promotes fas ligand-mediated apoptosis in cancer cells. Gastroenterology 140:2009–2018 (2018.e2001-2004)

    Article  CAS  PubMed  Google Scholar 

  69. Dash PR, McCormick J, Thomson MJ, Johnstone AP, Cartwright JE, Whitley GS (2007) Fas ligand-induced apoptosis is regulated by nitric oxide through the inhibition of fas receptor clustering and the nitrosylation of protein kinase Cepsilon. Exp Cell Res 313:3421–3431

    Article  CAS  PubMed  Google Scholar 

  70. Janssen-Heininger YM, Aesif SW, van der Velden J et al (2010) Regulation of apoptosis through cysteine oxidation: implications for fibrotic lung disease. Ann N Y Acad Sci 1203:23–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Anathy V, Aesif SW, Guala AS et al (2009) Redox amplification of apoptosis by caspase-dependent cleavage of glutaredoxin 1 and S-glutathionylation of Fas. J Cell Biol 184:241–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fernandes AP, Holmgren A (2004) Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid Redox Signal 6:63–74

    Article  CAS  PubMed  Google Scholar 

  73. O’ Reilly LA, Tai L, Lee L et al (2009) Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature 461:659–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Volkswagen Foundation (VW 90315), Wilhelm Sander-Stiftung (2017.008.01), Center of dynamic systems (CDS), funded by the EU-programme ERDF (European Regional Development Fund) and DFG (LA 2386) for supporting our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inna N. Lavrik.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyrek, K., Lavrik, I.N. Modulation of CD95-mediated signaling by post-translational modifications: towards understanding CD95 signaling networks. Apoptosis 24, 385–394 (2019). https://doi.org/10.1007/s10495-019-01540-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-019-01540-0

Keywords

Navigation