Skip to main content

Advertisement

Log in

Role of glycogen synthase kinase following myocardial infarction and ischemia–reperfusion

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Glycogen synthase kinase-3 beta (GSK3β) is principally is a glycogen synthase phosphorylating enzyme that is well known for its role in muscle metabolism. GSK3β is a serine/threonine protein Kinase, which is responsible for several essential roles in mammalian cells. This enzyme is implicated in the pathophysiology of many conditions involved in homeostasis and cellular immigration. GSK3β is involved in several pathways leading to neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. Increasing evidence has shown the potential importance of GSK3β in ischemic heart disease and ischemia–reperfusion pathologies. Reperfusion injury may occur in tissues after prolonged ischemia following reperfusion. Reperfusion injury can be life threatening. Reperfusion injury occurs due to a change in ionic homeostasis, excess free radical production, mitochondrial damage and cell death. There are however clear, cardiac-protective signals; although the molecular pathophysiology is not clearly understood. In normal physiology, GSK3β has a critical role in the cytoprotective pathway. However, it`s controversial role in ischemia and ischemia–reperfusion is a topic of current interest. In this review, we have opted to focus on GSK3β interactions with mitochondria in ischemic heart disease and expand on the therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

IGF1:

Insulin growth factor I

SRF:

Serum response factor

CK1:

Casein kinase

TAO:

TAO kinase-1

p38MAPK:

Mitogen-activated protein kinase

PI3K:

Phosphatidylinositol-4,5-bisphosphate-3-kinase

AKT:

Serin/threonine kinase-1

MPTP:

Mitochondrial permeability transition pores

cypD:

Cyclophilin D-dependent mitochondrial permeability transition

ANT :

ADP/ATP translocase 3

VDAC :

Voltage-dependent anion-selective channel protein 1

BAX :

BCL2 associated X apoptosis regulator

BCL-2:

BCL2 apoptosis regulator

Cyto c:

Cytochrome c

References

  1. Naghavi M, Wang H, Lozano R, Davis A, Liang X, Zhou M et al (2015) Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385(9963):117–171

    Article  Google Scholar 

  2. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ et al (2014) Executive summary: heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129(3):399

    Article  PubMed  Google Scholar 

  3. Turer AT, Hill JA (2010) Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. Am J Cardiol 106(3):360–368

    Article  PubMed  PubMed Central  Google Scholar 

  4. Di Lisa F, Canton M, Menabò R, Kaludercic N, Bernardi P (2007) Mitochondria and cardioprotection. Heart Fail Rev 12(3–4):249–260

    Article  CAS  PubMed  Google Scholar 

  5. Murphy E, Steenbergen C (2008) Ion transport and energetics during cell death and protection. Physiology 23(2):115–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hanger DP, Noble W (2011) Functional implications of glycogen synthase kinase-3-mediated tau phosphorylation. Int J Alzheimer’s Dis 2011:352805

    Google Scholar 

  7. Ballou LM, Tian P-Y, Lin H-Y, Jiang Y-P, Lin RZ (2001) Dual regulation of glycogen synthase kinase-3β by the α1A-adrenergic receptor. J Biol Chem 276(44):40910–40916

    Article  CAS  PubMed  Google Scholar 

  8. Patel S, Doble BW, MacAulay K, Sinclair EM, Drucker DJ, Woodgett JR (2008) Tissue-specific role of glycogen synthase kinase 3β in glucose homeostasis and insulin action. Mol Cell Biol 28(20):6314–6328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu D, Pan W (2010) GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci 35(3):161–168

    Article  CAS  PubMed  Google Scholar 

  10. Bijur GN, Jope RS (2003) Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation. J Neurochem 87(6):1427–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arfeen M, Patel R, Khan T, Bharatam PV (2015) Molecular dynamics simulation studies of GSK-3β ATP competitive inhibitors: Understanding the factors contributing to selectivity. J Biomol Struct Dyn 33(12):2578–2593

    Article  CAS  PubMed  Google Scholar 

  12. Dajani R, Fraser E, Roe SM, Young N, Good V, Dale TC et al (2001) Crystal structure of glycogen synthase kinase 3β: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell 105(6):721–732

    Article  CAS  PubMed  Google Scholar 

  13. Frame S, Cohen P, Biondi RM (2001) A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol Cell 7(6):1321–1327

    Article  CAS  PubMed  Google Scholar 

  14. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378(6559):785

    Article  CAS  PubMed  Google Scholar 

  15. Alabed YZ, Pool M, Tone SO, Sutherland C, Fournier AE (2010) GSK3β regulates myelin-dependent axon outgrowth inhibition through CRMP4. J Neurosci 30(16):5635–5643

    Article  CAS  PubMed  Google Scholar 

  16. Metcalfe C, Bienz M (2011) Inhibition of GSK3 by Wnt signalling-two contrasting models. J Cell Sci 124(21):3537–3544

    Article  CAS  PubMed  Google Scholar 

  17. Hart MJ, de los Santos R, Albert IN, Rubinfeld B, Polakis P (1998) Downregulation of β-catenin by human Axin and its association with the APC tumor suppressor, β-catenin and GSK3β. Curr Biol 8(10):573–581

    Article  CAS  PubMed  Google Scholar 

  18. Thornton TM, Pedraza-Alva G, Deng B, Wood CD, Aronshtam A, Clements JL et al (2008) Phosphorylation by p38 MAPK as an alternative pathway for GSK3β inactivation. Science 320(5876):667–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang B-Y, Liu C-M, Wang R-Y, Zhu Q, Jiao Z, Zhou F-Q (2014) Akt-independent GSK3 inactivation downstream of PI3K signaling regulates mammalian axon regeneration. Biochem Biophys Res Commun 443(2):743–748

    Article  CAS  PubMed  Google Scholar 

  20. Suzuki T, Bridges D, Nakada D, Skiniotis G, Morrison SJ, Lin JD et al (2013) Inhibition of AMPK catabolic action by GSK3. Mol Cell 50(3):407–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chouchani ET, Pell VR, Gaude E, Aksentijević D, Sundier SY, Robb EL et al (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515(7527):431–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kadenbach B, Barth J, Akgün R, Freund R, Linder D, Possekel S (1995) Regulation of mitochondrial energy generation in health and disease. Biochim Biophys Acta 1271(1):103–109

    Article  PubMed  Google Scholar 

  23. Chiong M, Wang Z, Pedrozo Z, Cao D, Troncoso R, Ibacache M et al (2011) Cardiomyocyte death: mechanisms and translational implications. Cell Death Dis 2(12):e244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2012) Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 298:229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bratic I, Trifunovic A (2010) Mitochondrial energy metabolism and ageing. Biochim Biophys Acta 1797(6):961–967

    Article  CAS  PubMed  Google Scholar 

  26. Solaini G, Baracca A, Lenaz G, Sgarbi G (2010) Hypoxia and mitochondrial oxidative metabolism. Biochim Biophys Acta 1797(6):1171–1177

    Article  CAS  PubMed  Google Scholar 

  27. Gayeski T, Connett RJ, Honig CR (1987) Minimum intracellular PO2 for maximum cytochrome turnover in red muscle in situ. Am J Physiol 252(5):H906–H915

    CAS  PubMed  Google Scholar 

  28. Sharma LK, Lu J, Bai Y (2009) Mitochondrial respiratory complex I: structure, function and implication in human diseases. Curr Med Chem 16(10):1266–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grimm S (2013) Respiratory chain complex II as general sensor for apoptosis. Biochim Biophys Acta 1827(5):565–572

    Article  CAS  PubMed  Google Scholar 

  30. Bénit P, Lebon S, Rustin P (2009) Respiratory-chain diseases related to complex III deficiency. Biochim Biophys Acta 1793(1):181–185

    Article  PubMed  Google Scholar 

  31. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  PubMed  Google Scholar 

  32. Klimova T, Chandel N (2008) Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death Differ 15(4):660–666

    Article  CAS  PubMed  Google Scholar 

  33. Wai T, Langer T (2016) Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metabol 27(2):105–117

    Article  CAS  Google Scholar 

  34. Qutub AA, Popel AS (2008) Reactive oxygen species regulate hypoxia-inducible factor 1α differentially in cancer and ischemia. Mol Cell Biol 28(16):5106–5119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8(9):705–713

    Article  CAS  PubMed  Google Scholar 

  36. Kim J-w, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3(3):177–185

    Article  PubMed  Google Scholar 

  37. Cui H, Grosso S, Schelter F, Mari B, Krüger A (2012) On the pro-metastatic stress response to cancer therapies: evidence for a positive co-operation between TIMP-1, HIF-1α, and miR-210. Front Pharmacol 3:134

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hwang AB, Lee S-J (2011) Regulation of life span by mitochondrial respiration: the HIF-1 and ROS connection. Aging 3(3):304–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Panieri E, Santoro M (2016) ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis 7(6):e2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kalogeris T, Bao Y, Korthuis RJ (2014) Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol 2:702–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hausenloy DJ, Yellon DM (2013) Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest 123(1):92–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Scholz W, Albus U (1993) Na+/H+ exchange and its inhibition in cardiac ischemia and reperfusion. Basic Res Cardiol 88(5):443–455

    Article  CAS  PubMed  Google Scholar 

  43. Ford DA (2002) Alterations in myocardial lipid metabolism during myocardial ischemia and reperfusion. Prog Lipid Res 41(1):6–26

    Article  CAS  PubMed  Google Scholar 

  44. Gomez L, Thiebaut P, Paillard M, Ducreux S, Abrial M, Da Silva CC et al (2016) The SR/ER-mitochondria calcium crosstalk is regulated by GSK3β during reperfusion injury. Cell Death Differ 23(2):313–322

    Article  CAS  PubMed  Google Scholar 

  45. Bround MJ, Wambolt R, Luciani DS, Kulpa JE, Rodrigues B, Brownsey RW et al (2013) Cardiomyocyte ATP production, metabolic flexibility, and survival require calcium flux through cardiac ryanodine receptors in vivo. J Biol Chem 288(26):18975–18986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Widgerow AD (2014) Ischemia-reperfusion injury: influencing the microcirculatory and cellular environment. Ann Plast Surg 72(2):253–260

    Article  CAS  PubMed  Google Scholar 

  47. Chen S, Li S (2012) The Na+/Ca2 + exchanger in cardiac ischemia/reperfusion injury. Med Sci Monit 18(11):RA161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Garlid AO, Jaburek M, Jacobs JP, Garlid KD (2013) Mitochondrial reactive oxygen species: which ROS signals cardioprotection? Am J Physiol 305(7):H960–H968

    CAS  Google Scholar 

  49. Di Lisa F, Bernardi P (2006) Mitochondria and ischemia–reperfusion injury of the heart: fixing a hole. Cardiovasc Res 70(2):191–199

    Article  PubMed  Google Scholar 

  50. Adeboye AA, Newman KP, Dishmon DA, Alsafwah S, Bhattacharya SK, Weber KT (2013) A mitochondriocentric pathway to cardiomyocyte necrosis: an upstream molecular mechanism in myocardial fibrosis. In: Jugdutt BI, Dhalla NS (eds) Cardiac remodeling. Springer, New York, pp 113–125

    Chapter  Google Scholar 

  51. Gottlieb RA (2011) Cell death pathways in acute ischemia/reperfusion injury. J Cardiovasc Pharmacol Ther 16(3–4):233–238

    Article  CAS  PubMed  Google Scholar 

  52. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri E, Baehrecke E et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16(1):3–11

    Article  CAS  PubMed  Google Scholar 

  53. Kadenbach B, Ramzan R, Moosdorf R, Vogt S (2011) The role of mitochondrial membrane potential in ischemic heart failure. Mitochondrion 11(5):700–706

    Article  CAS  PubMed  Google Scholar 

  54. Holleyman CR, Larson DF (2001) Apoptosis in the ischemic reperfused myocardium. Perfusion 16(6):491–502

    Article  CAS  PubMed  Google Scholar 

  55. Sivaraman V, Yellon DM (2013) Pharmacologic therapy that simulates conditioning for cardiac ischemic/reperfusion injury. J Cardiovasc Pharmacol Ther. doi:10.1177/1074248413499973

    PubMed  Google Scholar 

  56. Garcia-Dorado D, Rodríguez-Sinovas A, Ruiz-Meana M, Inserte J (2014) Protection against myocardial ischemia-reperfusion injury in clinical practice. Rev Esp Cardiol (English Edition) 67(5):394–404

    Google Scholar 

  57. Kinnally KW, Peixoto PM, Ryu S-Y, Dejean LM (2011) Is mPTP the gatekeeper for necrosis, apoptosis, or both? Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res 1813(4):616–622

    CAS  Google Scholar 

  58. Sanada S, Komuro I, Kitakaze M (2011) Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning and translational aspects of protective measures. Am J Physiol 301:H1723–H1741

    CAS  Google Scholar 

  59. Biasutto L, Azzolini M, Szabò I, Zoratti M (2016) The mitochondrial permeability transition pore in AD 2016: an update. Biochim Biophys Acta 1863(10):2515–2530

    Article  CAS  PubMed  Google Scholar 

  60. Tsujimoto Y, Shimizu S (2007) Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 12(5):835–840

    Article  CAS  PubMed  Google Scholar 

  61. Brenner C, Moulin M (2012) Physiological roles of the permeability transition pore. Circ Res 111(9):1237–1247

    Article  CAS  PubMed  Google Scholar 

  62. Halestrap AP (2009) Mitochondria and reperfusion injury of the heart—a holey death but not beyond salvation. J Bioenerg Biomembr 41(2):113–121

    Article  CAS  PubMed  Google Scholar 

  63. Vaca Jacome AS, Rabilloud T, Schaeffer-Reiss C, Rompais M, Ayoub D, Lane L et al (2015) N-terminome analysis of the human mitochondrial proteome. Proteomics 15(14):2519–2524

    Article  CAS  PubMed  Google Scholar 

  64. Mnatsakanyan N, Beutner G, Porter GA, Alavian KN, Jonas EA (2016) Physiological roles of the mitochondrial permeability transition pore. J Bioenerg Biomembr 49:1–13

    Google Scholar 

  65. Rayasam GV, Tulasi VK, Sodhi R, Davis JA, Ray A (2009) Glycogen synthase kinase 3: more than a namesake. Br J Pharmacol 156(6):885–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sugden PH, Fuller SJ, Weiss S, Clerk A (2008) Glycogen synthase kinase 3 (GSK3) in the heart: a point of integration in hypertrophic signalling and a therapeutic target? A critical analysis. Br J Pharmacol 153(S1):137–153

    Article  Google Scholar 

  67. Juhaszova M, Zorov DB, Kim S-H, Pepe S, Fu Q, Fishbein KW et al (2004) Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 113(11):1535–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wagner C, Tillack D, Simonis G, Strasser RH, Weinbrenner C (2010) Ischemic post-conditioning reduces infarct size of the in vivo rat heart: role of PI3-K, mTOR, GSK-3β, and apoptosis. Mol Cell Biochem 339(1–2):135–147

    Article  CAS  PubMed  Google Scholar 

  69. Hausenloy DJ, Yellon DM (2007) Preconditioning and postconditioning: united at reperfusion. Pharmacol Ther 116(2):173–191

    Article  CAS  PubMed  Google Scholar 

  70. Granger DN, Kvietys PR (2015) Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol 6:524–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Juhaszova M, Zorov DB, Yaniv Y, Nuss HB, Wang S, Sollott SJ (2009) Role of glycogen synthase kinase-3β in cardioprotection. Circ Res 104(11):1240–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gimenez-Cassina A, Lim F, Cerrato T, Palomo GM, Diaz-Nido J (2009) Mitochondrial hexokinase II promotes neuronal survival and acts downstream of glycogen synthase kinase-3. J Biol Chem 284(5):3001–3011

    Article  CAS  PubMed  Google Scholar 

  73. Ferdinandy P, Schulz R, Baxter GF (2007) Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev 59(4):418–458

    Article  CAS  PubMed  Google Scholar 

  74. Linseman DA, Butts BD, Precht TA, Phelps RA, Le SS, Laessig TA et al (2004) Glycogen synthase kinase-3β phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J Neurosci 24(44):9993–10002

    Article  CAS  PubMed  Google Scholar 

  75. Hafner AV, Dai J, Gomes AP, Xiao C-Y, Palmeira CM, Rosenzweig A et al (2010) Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging 2(12):914–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Watcharasit P, Thiantanawat A, Satayavivad J (2008) GSK3 promotes arsenite-induced apoptosis via facilitation of mitochondria disruption. J Appl Toxicol 28(4):466–474

    Article  CAS  PubMed  Google Scholar 

  77. Proctor CJ, Gray DA (2010) GSK3 and p53-is there a link in Alzheimer’s disease? Mol Neurodegener 5(1):7

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Soleimani-Rad or B. Baradaran.

Additional information

S. Ghaderi, N. Alidadiani, J. Soleimani-Rad and B. Baradaran have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaderi, S., Alidadiani, N., Dilaver, N. et al. Role of glycogen synthase kinase following myocardial infarction and ischemia–reperfusion. Apoptosis 22, 887–897 (2017). https://doi.org/10.1007/s10495-017-1376-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-017-1376-0

Keywords

Navigation