Skip to main content

Advertisement

Log in

Crosstalk between GSK-3β-actuated molecular cascades and myocardial physiology

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

An Author Correction to this article was published on 09 July 2020

An Author Correction to this article was published on 08 May 2020

This article has been updated

Abstract

The finding of “glycogen synthase kinase-3” (GSK-3) was initially identified as a protein kinase that phosphorylate and inhibited glycogen synthase. However, it was soon discovered that GSK-3 also has significant impact in regulation of truly astonishing number of critical intracellular signaling pathways ranging from regulation of cell growth, neurology, heart failure, diabetes, aging, inflammation, and cancer. Recent studies have validated the feasibility of targeting GSK-3 for its vital therapeutic potential to maintain normal myocardial homeostasis, conversely, its loss is incompatible with life as it can abrupt cell cycle and endorse fatal cardiomyopathy. The current study focuses on its expanding therapeutic action in myocardial tissue, concentrating primarily on its role in diabetes-associated cardiac complication, apoptosis and metabolism, heart failure, cardiac hypertrophy, and myocardial infarction. The current report also includes the finding of our previous investigation that has shown the impact of GSK-3β inhibitor against diabetes-associated myocardial injury and experimentally induced myocardial infarction. We have also discussed some recent identified GSK-3β inhibitors for their cardio-protective potential. The crosstalk of various underlying mechanisms that highlight the significant role of GSK-3β in myocardial pathophysiology have been discussed in the present report. For these literatures, we will rely profoundly on our previous studies and those of others to reconcile some of the deceptive contradictions in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  1. Romorini L, Garate X, Neiman G, Luzzani C, Furmento VA, Guberman AS, Sevlever GE, Scassa ME, Miriuka SG (2016) AKT/GSK3β signaling pathway is critically involved in human pluripotent stem cell survival. Sci Rep 6:35660. https://doi.org/10.1038/srep35660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cohen P, Yellowlees D, Aitken A et al (1982) Separation and characterisation of glycogen synthase kinase 3, glycogen synthase kinase 4 and glycogen synthase kinase 5 from rabbit skeletal muscle. Eur J Biochem 124:21–35. https://doi.org/10.1111/j.1432-1033.1982.tb05902.x

    Article  CAS  PubMed  Google Scholar 

  3. Buch I, Fishelovitch D, London N, Raveh B, Wolfson HJ, Nussinov R (2010) Allosteric regulation of glycogen synthase kinase 3β: a theoretical study. Biochemistry 49:10890–10901. https://doi.org/10.1021/bi100822q

    Article  CAS  PubMed  Google Scholar 

  4. Lal H, Ahmad F, Woodgett J, Force T (2015) Gsk-3家族成为心血管疾病新靶点. Circ Res 116:138–149. https://doi.org/10.1161/CIRCRESAHA.116.303613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pal K, Cao Y, Gaisina IN, Bhattacharya S, Dutta SK, Wang E, Gunosewoyo H, Kozikowski AP, Billadeau DD, Mukhopadhyay D (2014) Inhibition of gsk-3 induces differentiation and impaired glucose metabolism in renal cancer. Mol Cancer Ther 13:285–296. https://doi.org/10.1158/1535-7163.MCT-13-0681

    Article  CAS  PubMed  Google Scholar 

  6. Kaidanovich-Beilin O, Woodgett JR (2011) GSK-3: functional insights from cell biology and animal models. Front Mol Neurosci 4:40. https://doi.org/10.3389/fnmol.2011.00040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stamos JL, Weis WI (2013) The β-catenin destruction complex. Cold Spring Harb Perspect Biol 5:a007898. https://doi.org/10.1101/cshperspect.a007898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Padrón-Barthe L, Villalba-Orero M, Gómez-Salinero JM, Domínguez F, Román M, Larrasa-Alonso J, Ortiz-Sánchez P, Martínez F, López-Olañeta M, Bonzón-Kulichenko E, Vázquez J, Martí-Gómez C, Santiago DJ, Prados B, Giovinazzo G, Gómez-Gaviro MV, Priori S, Garcia-Pavia P, Lara-Pezzi E (2019) Severe cardiac dysfunction and death caused by Arrhythmogenic right ventricular cardiomyopathy type 5 are improved by inhibition of glycogen synthase kinase-3β. Circulation 140:1188–1204. https://doi.org/10.1161/CIRCULATIONAHA.119.040366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Takahashi-Yanaga F (2018) Roles of glycogen synthase kinase-3 (GSK-3) in cardiac development and heart disease. J UOEH 40:147–156

    Article  CAS  Google Scholar 

  10. Singh AP, Umbarkar P, Guo Y, Force T, Gupte M, Lal H (2019) Inhibition of GSK-3 to induce cardiomyocyte proliferation: a recipe for in situ cardiac regeneration. Cardiovasc Res 115:20–30

    Article  CAS  Google Scholar 

  11. Murphy E (2004) Inhibit GSK-3beta or there’s heartbreak dead ahead. J Clin Invest 113:1526–1528. https://doi.org/10.1172/JCI21986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou J, Ahmad F, Parikh S, Hoffman NE, Rajan S, Verma VK, Song J, Yuan A, Shanmughapriya S, Guo Y, Gao E, Koch W, Woodgett JR, Madesh M, Kishore R, Lal H, Force T (2016) Loss of adult cardiac myocyte GSK-3 leads to mitotic catastrophe resulting in fatal dilated cardiomyopathy. Circ Res 118:1208–1222. https://doi.org/10.1161/CIRCRESAHA.116.308544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ahmad F, Lal H, Zhou J, Vagnozzi RJ, Yu JE, Shang X, Woodgett JR, Gao E, Force T (2014) Cardiomyocyte-specific deletion of Gsk3α mitigates post-myocardial infarction remodeling, contractile dysfunction, and heart failure. J Am Coll Cardiol 64:696–706. https://doi.org/10.1016/j.jacc.2014.04.068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sharma AK, Kumar A, Sahu M, Sharma G, Datusalia AK, Rajput SK (2018) Exercise preconditioning and low dose copper nanoparticles exhibits cardioprotection through targeting GSK-3β phosphorylation in ischemia/reperfusion induced myocardial infarction. Microvasc Res 120:59–66. https://doi.org/10.1016/j.mvr.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  15. Zhai P, Sadoshima J (2012) Glycogen synthase kinase-3β controls autophagy during myocardial ischemia and reperfusion. Autophagy 8:138–139

    Article  CAS  Google Scholar 

  16. Zhai P, Sciarretta S, Galeotti J, Volpe M, Sadoshima J (2011) Differential roles of GSK-3β during myocardial ischemia and ischemia/reperfusion. Circ Res 109:502–511. https://doi.org/10.1161/CIRCRESAHA.111.249532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Duran J, Oyarce C, Pavez M et al (2016) GSK-3β/NFAT signaling is involved in testosterone-induced cardiac myocyte hypertrophy. PLoS One 11. https://doi.org/10.1371/journal.pone.0168255

  18. Laco F, Woo TL, Zhong Q, Szmyd R, Ting S, Khan FJ, Chai CLL, Reuveny S, Chen A, Oh S (2018) Unraveling the inconsistencies of cardiac differentiation efficiency induced by the GSK3β inhibitor CHIR99021 in human pluripotent stem cells. Stem Cell Rep 10:1851–1866. https://doi.org/10.1016/j.stemcr.2018.03.023

    Article  CAS  Google Scholar 

  19. Sharma A, Zhang Y, Buikema JW, Serpooshan V, Chirikian O, Kosaric N, Churko JM, Dzilic E, Shieh A, Burridge PW, Wu JC, Wu SM (2018) Stage-specific effects of bioactive lipids on human iPSC cardiac differentiation and cardiomyocyte proliferation. Sci Rep 8:6618. https://doi.org/10.1038/s41598-018-24954-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Buchholz B, Kelly J, Muñoz M, Bernatené EA, Méndez Diodati N, González Maglio DH, Dominici FP, Gelpi RJ (2018) Vagal stimulation mimics preconditioning and postconditioning of ischemic myocardium in mice by activating different protection mechanisms. Am J Physiol Heart Circ Physiol 314:H1289–H1297. https://doi.org/10.1152/ajpheart.00286.2017

    Article  CAS  PubMed  Google Scholar 

  21. Sugden PH, Fuller SJ, Weiss SC, Clerk A (2008) Glycogen synthase kinase 3 (GSK3) in the heart: a point of integration in hypertrophic signalling and a therapeutic target? A critical analysis. Br J Pharmacol

  22. Sunaga D, Tanno M, Kuno A et al (2014) Accelerated recovery of mitochondrial membrane potential by gsk-3β inactivation affords cardiomyocytes protection from oxidant-induced necrosis. PLoS One 9. https://doi.org/10.1371/journal.pone.0112529

  23. Omar MA, Wang L, Clanachan AS (2010) Cardioprotection by GSK-3 inhibition: role of enhanced glycogen synthesis and attenuation of calcium overload. Cardiovasc Res 86:478–486. https://doi.org/10.1093/cvr/cvp421

    Article  CAS  PubMed  Google Scholar 

  24. Liu W, Wang X, Mei Z, Gong J, Gao X, Zhao Y, Ma J, Xie F, Qian L (2015) Chronic stress promotes the progression of pressure overload-induced cardiac dysfunction through inducing more apoptosis and fibrosis. Physiol Res 64:325–334

    Article  CAS  Google Scholar 

  25. Mosqueira D, Smith JGW, Bhagwan JR, Denning C (2019) Modeling hypertrophic cardiomyopathy: mechanistic insights and pharmacological intervention. Trends Mol Med 25:775–790. https://doi.org/10.1016/j.molmed.2019.06.005

    Article  CAS  PubMed  Google Scholar 

  26. Maillet M, Van Berlo JH, Molkentin JD (2013) Molecular basis of physiological heart growth: fundamental concepts and new players. Nat Rev Mol Cell Biol 14:38–48

    Article  CAS  Google Scholar 

  27. Nabben M, Neumann D (2016) GSK-3 inhibitors: anti-diabetic treatment associated with cardiac risk?: Editorial to: “The impact of chronic glycogen synthase kinase-3 inhibition on remodeling of normal and pre-diabetic rat hearts.” by Barbara Huisamen et al. Cardiovasc Drugs Ther 30:233–235

    Article  Google Scholar 

  28. Deng H, Dokshin GA, Lei J, Goldsmith AM, Bitar KN, Fingar DC, Hershenson MB, Bentley JK (2008) Inhibition of glycogen synthase kinase-3βis sufficient for airway smooth muscle hypertrophy. J Biol Chem 283:10198–10207. https://doi.org/10.1074/jbc.M800624200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sharma AK, Khanna D, Balakumar P (2014) Low-dose dipyridamole treatment partially prevents diabetes mellitus-induced vascular endothelial and renal abnormalities in rats. Int J Cardiol 172:530–532. https://doi.org/10.1016/j.ijcard.2014.01.053

    Article  PubMed  Google Scholar 

  30. Sharma AK, Kumar A, Taneja G, Nagaich U, Deep A, Datusalia AK, Rajput SK (2018) Combined and individual strategy of exercise generated preconditioning and low dose copper nanoparticles serve as superlative approach to ameliorate ISO-induced myocardial infarction in rats. Pharmacol Rep 70:789–795. https://doi.org/10.1016/j.pharep.2018.02.023

    Article  CAS  PubMed  Google Scholar 

  31. Wang L, Wang Y, Zhang C, Li J, Meng Y, Dou M, Noguchi CT, di L (2018) Inhibiting glycogen synthase kinase 3 reverses obesity-induced white adipose tissue inflammation by regulating apoptosis inhibitor of macrophage/CD5L-mediated macrophage migration. Arterioscler Thromb Vasc Biol 38:2103–2116. https://doi.org/10.1161/ATVBAHA.118.311363

    Article  CAS  PubMed  Google Scholar 

  32. Alhusban A, Alkhazaleh E, El-Elimat T (2017) Silymarin ameliorates diabetes-induced proangiogenic response in brain endothelial cells through a GSK-3 β inhibition-induced reduction of VEGF release. J Diabetes Res 2017:. https://doi.org/10.1155/2017/2537216, 2017, 1, 9

  33. Cheng H, Woodgett J, Maamari M, Force T (2011) Targeting GSK-3 family members in the heart: a very sharp double-edged sword. J Mol Cell Cardiol 51:607–613. https://doi.org/10.1016/j.yjmcc.2010.11.020

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Welzig CM, Haburcak M, Wang B, Aronovitz M, Blanton RM, Park HJ, Force T, Noujaim S, Galper JB (2019) Targeted disruption of glycogen synthase kinase-3β in cardiomyocytes attenuates cardiac parasympathetic dysfunction in type 1 diabetic Akita mice. PLoS One 14:e0215213. https://doi.org/10.1371/journal.pone.0215213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ahmad F, Singh AP, Tomar D, Rahmani M, Zhang Q, Woodgett JR, Tilley DG, Lal H, Force T (2019) Cardiomyocyte-GSK-3α promotes mPTP opening and heart failure in mice with chronic pressure overload. J Mol Cell Cardiol 130:65–75. https://doi.org/10.1016/j.yjmcc.2019.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang L, Guo Z, Wang Y, Geng J, Han S (2019) The protective effect of kaempferol on heart via the regulation of Nrf2, NF-κβ, and PI3K/Akt/GSK-3β signaling pathways in isoproterenol-induced heart failure in diabetic rats. Drug Dev Res 80:294–309. https://doi.org/10.1002/ddr.21495

    Article  CAS  PubMed  Google Scholar 

  37. Woulfe KC, Gao E, Lal H, Harris D, Fan Q, Vagnozzi R, DeCaul M, Shang X, Patel S, Woodgett JR, Force T, Zhou J (2010) Glycogen synthase kinase-3β regulates post-myocardial infarction remodeling and stress-induced cardiomyocyte proliferation in vivo. Circ Res 106:1635–1645. https://doi.org/10.1161/CIRCRESAHA.109.211482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kunnimalaiyaan S, Schwartz VK, Jackson IA, Clark Gamblin T, Kunnimalaiyaan M (2018) Antiproliferative and apoptotic effect of LY2090314, a GSK-3 inhibitor, in neuroblastoma in vitro. BMC Cancer 18:560. https://doi.org/10.1186/s12885-018-4474-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gupte M, Tumuluru S, Sui JY, Singh AP, Umbarkar P, Parikh SS, Ahmad F, Zhang Q, Force T, Lal H (2018) Cardiomyocyte-specific deletion of GSK-3β leads to cardiac dysfunction in a diet induced obesity model. Int J Cardiol 259:145–152. https://doi.org/10.1016/j.ijcard.2018.01.013

    Article  PubMed  PubMed Central  Google Scholar 

  40. Guo Y, Gupte M, Umbarkar P, Singh AP, Sui JY, Force T, Lal H (2017) Entanglement of GSK-3β, β-catenin and TGF-β1 signaling network to regulate myocardial fibrosis. J Mol Cell Cardiol 110:109–120

    Article  CAS  Google Scholar 

  41. Tanaka R, Umemura M, Narikawa M, Fujita T, Yokoyama U, Ishigami T, Kimura K, Tamura K, Ishikawa Y (2018) Hydrostatic pressure suppresses fibrotic changes via Akt/GSK-3 signaling in human cardiac fibroblasts. Physiol Rep 6:e13687. https://doi.org/10.14814/phy2.13687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Qi JY, Xu M, Lu ZZ, Zhang YY (2010) 14-3-3 inhibits insulin-like growth factor-I-induced proliferation of cardiac fibroblasts via a phosphatidylinositol 3-kinase-dependent pathway. Clin Exp Pharmacol Physiol 37:296–302. https://doi.org/10.1111/j.1440-1681.2009.05282.x

    Article  CAS  PubMed  Google Scholar 

  43. Bai L, Chang H-M, Cheng J-C, Chu G, Leung PCK, Yang G (2017) Lithium chloride increases COX-2 expression and PGE2 production in a human granulosa-lutein SVOG cell line via a GSK-3β/β-catenin signaling pathway. Endocrinology 158:2813–2825. https://doi.org/10.1210/en.2017-00287

    Article  CAS  PubMed  Google Scholar 

  44. Wang H, Sui H, Zheng Y, Jiang Y, Shi Y, Liang J, Zhao L (2019) Curcumin-primed exosomes potently ameliorate cognitive function in AD mice by inhibiting hyperphosphorylation of the tau protein through the AKT/GSK-3β pathway. Nanoscale 11:7481–7496. https://doi.org/10.1039/c9nr01255a

    Article  CAS  PubMed  Google Scholar 

  45. Rao SR, Sundararajan S, Subbarayan R, Murugan Girija D (2017) Cyclosporine-A induces endoplasmic reticulum stress and influences pro-apoptotic factors in human gingival fibroblasts. Mol Cell Biochem 429:179–185. https://doi.org/10.1007/s11010-017-2945-9

    Article  CAS  PubMed  Google Scholar 

  46. Luo J (2012) The role of GSK3beta in the development of the central nervous system. Front Biol (Beijing) 7:212–220

    Article  CAS  Google Scholar 

  47. Sussman MA, Völkers M, Fischer K, Bailey B, Cottage CT, Din S, Gude N, Avitabile D, Alvarez R, Sundararaman B, Quijada P, Mason M, Konstandin MH, Malhowski A, Cheng Z, Khan M, McGregor M (2011) Myocardial AKT: the omnipresent nexus. Physiol Rev 91:1023–1070

    Article  CAS  Google Scholar 

  48. Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2016) Ischemia/reperfusion. Compr Physiol 7:113–170. https://doi.org/10.1002/cphy.c160006

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chen L, Cai P, Cheng Z, Zhang Z, Fang J (2017) Pharmacological postconditioning with atorvastatin calcium attenuates myocardial ischemia/reperfusion injury in diabetic rats by phosphorylating GSK3β. Exp Ther Med 14:25–34. https://doi.org/10.3892/etm.2017.4457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Small BA, Lu Y, Hsu AK et al (2015) Morphine reduces myocardial infarct size via heat shock protein 90 in rodents. Biomed Res Int 2015. https://doi.org/10.1155/2015/129612

  51. Kabir ME, Singh H, Lu R, Olde B, Leeb-Lundberg LMF, Bopassa JC (2015) G protein-coupled estrogen receptor 1 mediates acute estrogen-induced cardioprotection via MEK/ERK/GSK-3β pathway after ischemia/reperfusion. PLoS One 10:e0135988. https://doi.org/10.1371/journal.pone.0135988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim CH, Hao J, Ahn HY, Kim SW (2012) Activation of Akt/protein kinase B mediates the protective effects of mechanical stretching against myocardial ischemia-reperfusion injury. J Vet Sci 13:235–244. https://doi.org/10.4142/jvs.2012.13.3.235

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rahman S, Li J, Bopassa JC, Umar S, Iorga A, Partownavid P, Eghbali M (2011) Phosphorylation of GSK-3β mediates intralipid-induced cardioprotection against ischemia/reperfusion injury. Anesthesiology 115:242–253. https://doi.org/10.1097/ALN.0b013e318223b8b9

    Article  CAS  PubMed  Google Scholar 

  54. Rossello X, Riquelme JA, Davidson SM, Yellon DM (2018) Role of PI3K in myocardial ischaemic preconditioning: mapping pro-survival cascades at the trigger phase and at reperfusion. J Cell Mol Med 22:926–935. https://doi.org/10.1111/jcmm.13394

    Article  CAS  PubMed  Google Scholar 

  55. Wu YY, Hsieh CT, Chiu YM et al (2018) GSK-3 inhibitors enhance TRAIL-mediated apoptosis in human gastric adenocarcinoma cells. PLoS One 13. https://doi.org/10.1371/journal.pone.0208094

  56. Nowsheen S, Yang ES (2012) The intersection between DNA damage response and cell death pathways. Exp Oncol 34:243–254

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Xia P, Liu Y, Cheng Z (2016) Signaling pathways in cardiac Myocyte apoptosis. Biomed Res Int 2016:9583268–9583222. https://doi.org/10.1155/2016/9583268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee TM, Lin SZ, Chang NC (2015) Inhibition of glycogen synthase kinase-3β prevents sympathetic hyperinnervation in infarcted rats. Exp Biol Med 240:979–992. https://doi.org/10.1177/1535370214564746

    Article  CAS  Google Scholar 

  59. Feng Y, Huang SL, Dou W, Zhang S, Chen JH, Shen Y, Shen JH, Leng Y (2010) Emodin, a natural product, selectively inhibits 11β-hydroxysteroid dehydrogenase type 1 and ameliorates metabolic disorder in diet-induced obese mice. Br J Pharmacol 161:113–126. https://doi.org/10.1111/j.1476-5381.2010.00826.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. De Zhang Y, Ding XJ, Dai HY et al (2018) SB-216763, a GSK-3β inhibitor, protects against aldosterone-induced cardiac, and renal injury by activating autophagy. J Cell Biochem 119:5934–5943. https://doi.org/10.1002/jcb.26788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Henriksen C, Hansen S, Nordgaard-Lassen I, Anderson JR, Madsen P (2010) Possible interactions between dietary fibres and 5-aminosalicylic acid [corrected]. Ther Adv Gastroenterol 3:5–9. https://doi.org/10.1177/1756283X09347810

    Article  CAS  Google Scholar 

  62. Al-Damry NT, Attia HA, Al-Rasheed NM et al (2018) Sitagliptin attenuates myocardial apoptosis via activating LKB-1/AMPK/Akt pathway and suppressing the activity of GSK-3β and p38α/MAPK in a rat model of diabetic cardiomyopathy. Biomed Pharmacother 107:347–358. https://doi.org/10.1016/j.biopha.2018.07.126

    Article  CAS  PubMed  Google Scholar 

  63. McCubrey JA, Lertpiriyapong K, Steelman LS et al (2017) Regulation of GSK-3 activity by curcumin, berberine and resveratrol: potential effects on multiple diseases. Adv Biol Regul 65:77–88

    Article  CAS  Google Scholar 

  64. Zeng Z, Wang Q, Yang X, Ren Y, Jiao S, Zhu Q, Guo D, Xia K, Wang Y, Li C, Wang W (2019) Qishen granule attenuates cardiac fibrosis by regulating TGF-β /Smad3 and GSK-3β pathway. Phytomedicine 62:152949. https://doi.org/10.1016/j.phymed.2019.152949

    Article  PubMed  Google Scholar 

  65. Shang L, Pin L, Zhu S, Zhong X, Zhang Y, Shun M, Liu Y, Hou M (2019) Plantamajoside attenuates isoproterenol-induced cardiac hypertrophy associated with the HDAC2 and AKT/ GSK-3β signaling pathway. Chem Biol Interact 307:21–28. https://doi.org/10.1016/j.cbi.2019.04.024

    Article  CAS  PubMed  Google Scholar 

  66. Liu J, Li Y, Tang Y, Cheng J, Wang J, Li J, Ma X, Zhuang W, Gong J, Liu Z (2018) Rhein protects the myocardiac cells against hypoxia/reoxygention-induced injury by suppressing GSK3β activity. Phytomedicine 51:1–6. https://doi.org/10.1016/j.phymed.2018.06.029

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the authority of the Amity Institute of Pharmacy, Amity University, Haryana-122413, India for providing the necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun K. Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: Figure 4 image and its citation was deleted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A.K., Bhatia, S., Al-Harrasi, A. et al. Crosstalk between GSK-3β-actuated molecular cascades and myocardial physiology. Heart Fail Rev 26, 1495–1504 (2021). https://doi.org/10.1007/s10741-020-09961-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-020-09961-9

Keywords

Navigation