Skip to main content
Log in

Low zinc environment induces stress signaling, senescence and mixed cell death modalities in colon cancer cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Currently it is not clear what type of the final cellular response (i.e. cell death modality or senescence) is induced upon chronic intracellular zinc depletion in colon cancer cells. To address this question, isogenic colon cancer lines SW480 and SW620 exposed to low zinc environment were studied over the period of 6 weeks. Low zinc environment reduced total as well as free intracellular zinc content in both cell lines. Decreased intracellular zinc content resulted in changes in cellular proliferation, cell cycle distribution and activation of stress signaling. In addition, colonocytes with low zinc content displayed increased levels of oxidative stress, changes in mitochondrial activity but in the absence of significant DNA damage. Towards the end of treatment (4th–6th week), exposed cells started to change morphologically, and typical markers of senescence as well as cell death appeared. Of two examined colon cancer cell lines, SW480 cells proved to activate predominantly senescent phenotype, with frequent form of demise being necrosis and mixed cell death modality but not apoptosis. Conversely, SW620 cells activated mostly cell death, with relatively equal distribution of apoptosis and mixed types, while senescent phenotypes and necrosis were present only in a small fraction of cell populations. Addition of zinc at the beginning of 4th week of treatment significantly suppressed cell death phenotypes in both cell lines but had no significant effect on senescence. In conclusion, presented results demonstrate variability of responses to chronic zinc depletion in colon cancer as modeled in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Buccigrossi V, Giannattasio A, Armellino C, Lo Vecchio A, Caiazzo MA, Guarino A (2010) The functional effects of nutrients on enterocyte proliferation and intestinal ion transport in early infancy. Early Hum Dev 86(Suppl 1):55–57

    Article  PubMed  Google Scholar 

  2. Potter JD (1999) Colorectal cancer: molecules and populations. J Nat Cancer Inst 91:916–932

    Article  CAS  PubMed  Google Scholar 

  3. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    CAS  PubMed  Google Scholar 

  4. Duff M, Ettarh R (2002) Crypt cell production rate in the small intestine of the zinc-supplemented mouse. Cells Tissues Organs 172:21–28

    Article  CAS  PubMed  Google Scholar 

  5. Schwartz JR, Marsh RG, Draelos ZD (2005) Zinc and skin health: overview of physiology and pharmacology. Dermatol Surg 31:837–847 (discussion 847)

    Article  CAS  PubMed  Google Scholar 

  6. Kim S, Jung Y, Kim D, Koh H, Chung J (2000) Extracellular zinc activates p70 S6 kinase through the phosphatidylinositol 3-kinase signaling pathway. J Biol Chem 275:25979–25984

    Article  CAS  PubMed  Google Scholar 

  7. Park KS, Lee NG, Lee KH, Seo JT, Choi KY (2003) The ERK pathway involves positive and negative regulations of HT-29 colorectal cancer cell growth by extracellular zinc. Am J Phys 285:G1181–G1188

    CAS  Google Scholar 

  8. Chai F, Truong-Tran AQ, Evdokiou A, Young GP, Zalewski PD (2000) Intracellular zinc depletion induces caspase activation and p21 Waf1/Cip1 cleavage in human epithelial cell lines. J Infect Dis 182(Suppl 1):S85–S92

    Article  CAS  PubMed  Google Scholar 

  9. Hyun HJ, Sohn J, Ahn YH, Shin HC, Koh JY, Yoon YH (2000) Depletion of intracellular zinc induces macromolecule synthesis- and caspase-dependent apoptosis of cultured retinal cells. Brain Res 869:39–48

    Article  CAS  PubMed  Google Scholar 

  10. Carter JW, Lancaster H, Hardman WE, Cameron IL (1997) Zinc deprivation promotes progression of 1,2-dimethylhydrazine-induced colon tumors but reduces malignant invasion in mice. Nutr Cancer 27:217–221

    Article  CAS  PubMed  Google Scholar 

  11. Malhotra A, Chadha VD, Nair P, Dhawan DK (2009) Role of zinc in modulating histo-architectural and biochemical alterations during dimethylhydrazine (DMH)-induced rat colon carcinogenesis. J Environ Pathol Toxicol Oncol 28:351–359

    Article  CAS  PubMed  Google Scholar 

  12. Jaiswal AS, Narayan S (2004) Zinc stabilizes adenomatous polyposis coli (APC) protein levels and induces cell cycle arrest in colon cancer cells. J Cell Biochem 93:345–357

    Article  CAS  PubMed  Google Scholar 

  13. John S, Briatka T, Rudolf E (2011) Diverse sensitivity of cells representing various stages of colon carcinogenesis to increased extracellular zinc: implications for zinc chemoprevention. Oncol Rep 25:769–780

    CAS  PubMed  Google Scholar 

  14. Majewska U, Banas D, Braziewicz J, Gozdz S, Kubala-Kukus A, Kucharzewski M (2007) Trace element concentration distributions in breast, lung and colon tissues. Phys Med Biol 52:3895–3911

    Article  CAS  PubMed  Google Scholar 

  15. Gupta SK, Shukla VK, Vaidya MP, Roy SK, Gupta S (1993) Serum and tissue trace elements in colorectal cancer. J Surg Oncol 52:172–175

    Article  CAS  PubMed  Google Scholar 

  16. Kim ES, Lim CS, Chun HJ et al (2012) Detection of Cu(I) and Zn(II) ions in colon tissues by multi-photon microscopy: novel marker of antioxidant status of colon neoplasm. J Clin Pathol 65:882–887

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Rudolf E, Cervinka M (2006) The role of intracellular zinc in chromium(VI)-induced oxidative stress, DNA damage and apoptosis. Chem-Biol Int 162:212–227

    Article  CAS  Google Scholar 

  18. Pourahmad J, Ross S, O’Brien PJ (2001) Lysosomal involvement in hepatocyte cytotoxicity induced by Cu(2+) but not Cd(2+). Free Radic Biol Med 30:89–97

    Article  CAS  PubMed  Google Scholar 

  19. Beyersmann D, Haase H (2001) Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals 14:331–341

    Article  CAS  PubMed  Google Scholar 

  20. Carter JE, Truong-Tran AQ, Grosser D, Ho L, Ruffin RE, Zalewski PD (2002) Involvement of redox events in caspase activation in zinc-depleted airway epithelial cells. Biochem Biophys Res Commun 297:1062–1070

    Article  CAS  PubMed  Google Scholar 

  21. Hyun HJ, Sohn JH, Ha DW, Ahn YH, Koh JY, Yoon YH (2001) Depletion of intracellular zinc and copper with TPEN results in apoptosis of cultured human retinal pigment epithelial cells. Invest Ophthal Vis Sci 42:460–465

    CAS  PubMed  Google Scholar 

  22. Kindermann B, Doring F, Pfaffl M, Daniel H (2004) Identification of genes responsive to intracellular zinc depletion in the human colon adenocarcinoma cell line HT-29. J Nutr 134:57–62

    CAS  PubMed  Google Scholar 

  23. Fanzo JC, Reaves SK, Cui L et al (2001) Zinc status affects p53, gadd45, and c-fos expression and caspase-3 activity in human bronchial epithelial cells. Am J Physiol 281:C751–C757

    CAS  Google Scholar 

  24. Wu JY, Wu Y, Reaves SK, Wang YR, Lei PP, Lei KY (1999) Apolipoprotein A-I gene expression is regulated by cellular zinc status in hep G2 cells. Am J Physiol 277:C537–C544

    CAS  PubMed  Google Scholar 

  25. Han CT, Schoene NW, Lei KY (2009) Influence of zinc deficiency on Akt-Mdm2-p53 and Akt-p21 signaling axes in normal and malignant human prostate cells. Am J Physiol 297:C1188–C1199

    Article  CAS  Google Scholar 

  26. Gurusamy KS, Farooqui N, Loizidou M et al (2011) Influence of zinc and zinc chelator on HT-29 colorectal cell line. Biometals 24:143–151

    Article  CAS  PubMed  Google Scholar 

  27. Hewitt RE, McMarlin A, Kleiner D et al (2000) Validation of a model of colon cancer progression. J Pathol 192:446–454

    Article  CAS  PubMed  Google Scholar 

  28. Rochette PJ, Bastien N, Lavoie J, Guerin SL, Drouin R (2005) SW480, a p53 double-mutant cell line retains proficiency for some p53 functions. J Mol Biol 352:44–57

    Article  CAS  PubMed  Google Scholar 

  29. Mackenzie GG, Zago MP, Aimo L, Oteiza PI (2007) Zinc deficiency in neuronal biology. IUBMB Life 59:299–307

    Article  CAS  PubMed  Google Scholar 

  30. Finamore A, Massimi M, Conti Devirgiliis L, Mengheri E (2008) Zinc deficiency induces membrane barrier damage and increases neutrophil transmigration in Caco-2 cells. J Nutr 138:1664–1670

    CAS  PubMed  Google Scholar 

  31. Wu W, Graves LM, Jaspers I, Devlin RB, Reed W, Samet JM (1999) Activation of the EGF receptor signaling pathway in human airway epithelial cells exposed to metals. Am J Physiol 277:L924–L931

    CAS  PubMed  Google Scholar 

  32. Wu W, Silbajoris RA, Whang YE, Graves LM, Bromberg PA, Samet JM (2005) p38 and EGF receptor kinase-mediated activation of the phosphatidylinositol 3-kinase/Akt pathway is required for Zn2+-induced cyclooxygenase-2 expression. Am J Physiol 289:L883–L889

    CAS  Google Scholar 

  33. Paski SC, Xu Z (2001) Labile intracellular zinc is associated with 3T3 cell growth. J Nutr Biochem 12:655–661

    Article  CAS  PubMed  Google Scholar 

  34. Simpson M, Xu Z (2006) Increased abundance of labile intracellular zinc during cell proliferation was due to increased retention of extracellular zinc in 3T3 cells. J Nutr Biochem 17:541–547

    Article  CAS  PubMed  Google Scholar 

  35. Powell SR (2000) The antioxidant properties of zinc. J Nutr 130:1447S–1454S

    CAS  PubMed  Google Scholar 

  36. Hashemi M, Ghavami S, Eshraghi M, Booy EP, Los M (2007) Cytotoxic effects of intra and extracellular zinc chelation on human breast cancer cells. Eur J Pharmacol 557:9–19

    Article  CAS  PubMed  Google Scholar 

  37. Nakatani T, Tawaramoto M, Opare-Kennedy D, Kojima A, Matsui-Yuasa I (2000) Apoptosis induced by chelation of intracellular zinc is associated with depletion of cellular reduced glutathione level in rat hepatocytes. Chem-Biol Int 125:151–163

    Article  CAS  Google Scholar 

  38. Fanzo JC, Reaves SK, Cui L, Zhu L, Lei KY (2002) p53 protein and p21 mRNA levels and caspase-3 activity are altered by zinc status in aortic endothelial cells. Am J Physiol 283:C631–C638

    Article  CAS  Google Scholar 

  39. Ra H, Kim HL, Lee HW, Kim YH (2009) Essential role of p53 in TPEN-induced neuronal apoptosis. FEBS Lett 583:1516–1520

    Article  CAS  PubMed  Google Scholar 

  40. Herbein G, Varin A, Fulop T (2006) NF-kappaB, AP-1, Zinc-deficiency and aging. Biogerontology 7:409–419

    Article  CAS  PubMed  Google Scholar 

  41. Rostan EF, DeBuys HV, Madey DL, Pinnell SR (2002) Evidence supporting zinc as an important antioxidant for skin. Int J Dermatol 41:606–611

    Article  CAS  PubMed  Google Scholar 

  42. Cortese MM, Suschek CV, Wetzel W, Kroncke KD, Kolb-Bachofen V (2008) Zinc protects endothelial cells from hydrogen peroxide via Nrf2-dependent stimulation of glutathione biosynthesis. Free Radic Biol Med 44:2002–2012

    Article  CAS  PubMed  Google Scholar 

  43. Pereira L, Igea A, Canovas B, Dolado I, Nebreda AR (2013) Inhibition of p38 MAPK sensitizes tumour cells to cisplatin-induced apoptosis mediated by reactive oxygen species and JNK. EMBO Mol Med 5:1759–1774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Chai F, Truong-Tran AQ, Ho LH, Zalewski PD (1999) Regulation of caspase activation and apoptosis by cellular zinc fluxes and zinc deprivation: a review. Immunol Cell Biol 77:272–278

    Article  CAS  PubMed  Google Scholar 

  45. Rayess H, Wang MB, Srivatsan ES (2012) Cellular senescence and tumor suppressor gene p16. Int J Cancer 130:1715–1725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Hasan MR, Ho SH, Owen DA, Tai IT (2011) Inhibition of VEGF induces cellular senescence in colorectal cancer cells. Int J Cancer 129:2115–2123

    Article  CAS  PubMed  Google Scholar 

  47. Jung YS, Qian Y, Chen X (2010) Examination of the expanding pathways for the regulation of p21 expression and activity. Cell Signal 22:1003–1012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Chimienti F, Seve M, Richard S, Mathieu J, Favier A (2001) Role of cellular zinc in programmed cell death: temporal relationship between zinc depletion, activation of caspases, and cleavage of Sp family transcription factors. Biochem Pharmacol 62:51–62

    Article  CAS  PubMed  Google Scholar 

  49. Summersgill H, England H, Lopez-Castejon G et al (2014) Zinc depletion regulates the processing and secretion of IL-1beta. Cell Death Dis 5:e1040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Lalaoui N, Lindqvist LM, Sandow JJ, Ekert PG (2015) The molecular relationships between apoptosis, autophagy and necroptosis. Sem Cell Dev Biol 39:63–69

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the program PRVOUK P37/01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Rudolf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudolf, E., Rudolf, K. Low zinc environment induces stress signaling, senescence and mixed cell death modalities in colon cancer cells. Apoptosis 20, 1651–1665 (2015). https://doi.org/10.1007/s10495-015-1182-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-015-1182-5

Keywords

Navigation