Skip to main content

Advertisement

Log in

NF-κB, AP-1, Zinc-deficiency and aging

  • Review Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Zinc (Zn) deficiency, a frequent condition in human population especially in aged persons, induces oxidative stress and subsequently activates/inhibits oxidant-sensitive transcription factors that can affect cell function, proliferation and survival leading to disease. Zn deficiency-triggered oxidative stress could affect cell signalling, including transcription factors containing Zn finger motifs and other oxidant-sensitive transcription factors such as nuclear factor kappa B (NF-κB) and activator protein-1 (AP-1). AP-1 can be activated in Zn deficiency that can occur secondary to an increase in cellular H2O2, followed by activation of MAPKs p38 and JNK. Similarly, the cytosolic steps of the NF-κB cascade are activated by oxidants in Zn deficiency. However, an impaired nuclear transport of the active transcription factor leads to a low expression of NF-κB-dependent genes that could be involved in multiple steps of Zn deficiency associated pathology. We present here evidence that, following experimental depletion of Zn, both NF-κB and AP-1 signallings are altered in primary T cells isolated from young and elderly healthy individuals under CD3/CD28 costimulation. A supplementation of Zn restored both NF-κB and AP-1 activation in CD3/CD28 costimulated T cells from young, but not from elderly, healthy individuals, indicating that the Zn deficiency is only one component of a more complex mechanism involved in immunosenescence. In this review we summarize our present knowledge on NF-κB and AP-1 activation and underline the role of Zn in this process, especially in the context of Zn deficiency observed in aged persons leading to immunosenescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angel P, Karin M (1991) The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1072:129–157

    PubMed  CAS  Google Scholar 

  • Baldwin AS (2001) Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest 107:241–246

    Article  PubMed  CAS  Google Scholar 

  • Baumann S, Hess J, Eichhorst ST, Krueger A, Angel P, Krammer PH, Kirchhoff S (2003) An unexpected role for FosB in activation-induced cell death of T cells. Oncogene 22:1333–1339

    Article  PubMed  CAS  Google Scholar 

  • Behrens A, Sabapathy K, Graef I, Cleary M, Crabtree GR, Wagner EF (2001) Jun N-terminal kinase 2 modulates thymocyte apoptosis and T cell activation through c-Jun and nuclear factor of activated T cell (NF-AT). Proc Natl Acad Sci USA 98:1769–1774

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Li X, Zhai Z, Shu HB (2002) A novel zinc finger protein interacts with receptor-interacting protein (RIP) and inhibits tumor necrosis factor (TNF)- and IL1-induced NF-kappa B activation. J Biol Chem 277:15985–15991

    Article  PubMed  CAS  Google Scholar 

  • Crist SA, Griffith TS, Ratliff TL (2003) Structure/function analysis of the murine CD95L promoter reveals the identification of a novel transcriptional repressor and functional CD28 response element. J Biol Chem 278:35950–35958

    Article  PubMed  CAS  Google Scholar 

  • Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252

    Article  PubMed  CAS  Google Scholar 

  • Devin A, Cook A, Lin Y, Rodriguez Y, Kelliher M, Liu Z (2000) The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity 12:419–429

    Article  PubMed  CAS  Google Scholar 

  • DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M (1997) A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 388:548–554

    Article  PubMed  CAS  Google Scholar 

  • Fraker PJ (2005) Roles for cell death in zinc deficiency. J Nutr 135:359–362

    PubMed  CAS  Google Scholar 

  • Ghosh S, Karin M (2002) Missing pieces in the NF-kappaB puzzle. Cell 109(Suppl):S81–S96

    Article  PubMed  CAS  Google Scholar 

  • Harman D (2003) The free radical theory of aging. Antioxid Redox Signal 5:557–561

    Article  PubMed  CAS  Google Scholar 

  • He KL, Ting AT (2002) A20 inhibits tumor necrosis factor (TNF) alpha-induced apoptosis by disrupting recruitment of TRADD and RIP to the TNF receptor 1 complex in Jurkat T cells. Mol Cell Biol 22:6034–6045

    Article  PubMed  CAS  Google Scholar 

  • Hennig B, Meerarani P, Toborek M, McClain CJ (1999) Antioxidant-like properties of zinc in activated endothelial cells. J Am Coll Nutr 18:152–158

    PubMed  CAS  Google Scholar 

  • Heyninck K, Beyaert R (1999) The cytokine-inducible zinc finger protein A20 inhibits IL-1-induced NF-kappaB activation at the level of TRAF6. FEBS Lett 442:147–150

    Article  PubMed  CAS  Google Scholar 

  • Heyninck K, De Valck D, Vanden Berghe W, Van Criekinge W, Contreras R, Fiers W, Haegeman G, Beyaert R (1999) The zinc finger protein A20 inhibits TNF-induced NF-kappaB-dependent gene expression by interfering with an RIP- or TRAF2-mediated transactivation signal and directly binds to a novel NF-kappaB-inhibiting protein ABIN. J Cell Biol 145:1471–1482

    Article  PubMed  CAS  Google Scholar 

  • Ho E, Ames BN (2002) Low intracellular zinc induces oxidative DNA damage, disrupts p53, NFkappa B, and AP1 DNA binding, and affects DNA repair in a rat glioma cell line. Proc Natl Acad Sci USA 99:16770–16775

    Article  PubMed  CAS  Google Scholar 

  • Ho LH, Ruffin RE, Murgia C, Li L, Krilis SA, Zalewski PD (2004) Labile zinc and zinc transporter ZnT4 in mast cell granules: role in regulation of caspase activation and NF-kappaB translocation. J Immunol 172:7750–7760

    PubMed  CAS  Google Scholar 

  • Inohara N, Koseki T, Lin J, del Peso L, Lucas PC, Chen FF, Ogura Y, Nunez G (2000) An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways. J Biol Chem 275:27823–27831

    PubMed  CAS  Google Scholar 

  • Jaattela M, Mouritzen H, Elling F, Bastholm L (1996) A20 zinc finger protein inhibits TNF and IL-1 signaling. J Immunol 156:1166–1173

    PubMed  CAS  Google Scholar 

  • Jankowski-Hennig MA, Clegg MS, Daston GP, Rogers JM, Keen CL (2000) Zinc-deficient rat embryos have increased caspase 3-like activity and apoptosis. Biochem Biophys Res Commun 271:250–256

    Article  PubMed  CAS  Google Scholar 

  • Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18:621–663

    Article  PubMed  CAS  Google Scholar 

  • Karin M, Lin A (2002) NF-kappaB at the crossroads of life and death. Nat Immunol 3:221–227

    Article  PubMed  CAS  Google Scholar 

  • Karin M, Liu Z, Zandi E (1997) AP-1 function and regulation. Curr Opin Cell Biol 9:240–246

    Article  PubMed  CAS  Google Scholar 

  • Klinkenberg M, Van Huffel S, Heyninck K, Beyaert R (2001) Functional redundancy of the zinc fingers of A20 for inhibition of NF-kappaB activation and protein–protein interactions. FEBS Lett 498:93–97

    Article  PubMed  CAS  Google Scholar 

  • Lamb JA, Ventura JJ, Hess P, Flavell RA, Davis RJ (2003) JunD mediates survival signaling by the JNK signal transduction pathway. Mol Cell 11:1479–1489

    Article  PubMed  CAS  Google Scholar 

  • Larbi A, Douziech N, Dupuis G, Khalil A, Pelletier H, Guerard KP, Fulop T Jr (2004) Age-associated alterations in the recruitment of signal-transduction proteins to lipid rafts in human T lymphocytes. J Leukoc Biol 75:373–381

    Article  PubMed  CAS  Google Scholar 

  • Lasham A, Lindridge E, Rudert F, Onrust R, Watson J (2000) Regulation of the human fas promoter by YB-1, Puralpha and AP-1 transcription factors. Gene 252:1–13

    Article  PubMed  CAS  Google Scholar 

  • Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP, Ma A (2000) Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 289:2350–2354

    Article  PubMed  CAS  Google Scholar 

  • Lin A (2003) Activation of the JNK signaling pathway: breaking the brake on apoptosis. Bioessays 25:17–24

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie GG, Zago MP, Keen CL, Oteiza PI (2002) Low intracellular zinc impairs the translocation of activated NF-kappa B to the nuclei in human neuroblastoma IMR-32 cells. J Biol Chem 277:34610–34617

    Article  PubMed  CAS  Google Scholar 

  • Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, Young DB, Barbosa M, Mann M, Manning A, Rao A (1997) IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278:860–866

    Article  PubMed  CAS  Google Scholar 

  • Moroni F, Di Paolo ML, Rigo A, Cipriano C, Giacconi R, Recchioni R, Marcheselli F, Malavolta M, Mocchegiani E (2005) Interrelationship among neutrophil efficiency, inflammation, antioxidant activity and zinc pool in very old age. Biogerontology 6:271–281

    Article  PubMed  CAS  Google Scholar 

  • Opipari AW Jr, Boguski MS, Dixit VM (1990) The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. J Biol Chem 265:14705–14708

    PubMed  CAS  Google Scholar 

  • O’Reilly SM, Moynagh PN (2003) Regulation of Toll-like receptor 4 signalling by A20 zinc finger protein. Biochem Biophys Res Commun 303:586–593

    Article  PubMed  CAS  Google Scholar 

  • Oteiza PI, Clegg MS, Keen CL (2001) Short-term zinc deficiency affects nuclear factor-kappab nuclear binding activity in rat testes. J Nutr 131:21–26

    PubMed  CAS  Google Scholar 

  • Oteiza PI, Clegg MS, Zago MP, Keen CL (2000) Zinc deficiency induces oxidative stress and AP-1 activation in 3T3 cells. Free Radic Biol Med 28:1091–1099

    Article  PubMed  CAS  Google Scholar 

  • Oteiza PI, Mackenzie GG, Verstraeten SV (2004) Metals in neurodegeneration: involvement of oxidants and oxidant-sensitive transcription factors. Mol Aspects Med 25:103–115

    Article  PubMed  CAS  Google Scholar 

  • Parry RV, Whittaker GC, Sims M, Edmead CE, Welham MJ, Ward SG (2006) Ligation of CD28 stimulates the formation of a multimeric signaling complex involving grb-2-associated binder 2 (gab2), SRC homology phosphatase-2, and phosphatidylinositol 3-kinase: evidence that negative regulation of CD28 signaling requires the gab2 pleckstrin homology domain. J Immunol 176:594–602

    PubMed  CAS  Google Scholar 

  • Poyet JL, Srinivasula SM, Lin JH, Fernandes-Alnemri T, Yamaoka S, Tsichlis PN, Alnemri ES (2000) Activation of the Ikappa B kinases by RIP via IKKgamma/NEMO-mediated oligomerization. J Biol Chem 275:37966–37977

    Article  PubMed  CAS  Google Scholar 

  • Prasad AS, Bao B, Beck FW, Kucuk O, Sarkar FH (2004) Antioxidant effect of zinc in humans. Free Radic Biol Med 37:1182–1190

    Article  PubMed  CAS  Google Scholar 

  • Prasad AS, Bao B, Beck FW, Sarkar FH (2002) Zinc enhances the expression of interleukin-2 and interleukin-2 receptors in HUT-78 cells by way of NF-kappaB activation. J Lab Clin Med 140:272–289

    Article  PubMed  CAS  Google Scholar 

  • Regnier CH, Song HY, Gao X, Goeddel DV, Cao Z, Rothe M (1997) Identification and characterization of an IkappaB kinase. Cell 90:373–383

    Article  PubMed  CAS  Google Scholar 

  • Rincon M, Whitmarsh A, Yang DD, Weiss L, Derijard B, Jayaraj P, Davis RJ, Flavell RA (1998) The JNK pathway regulates the In vivo deletion of immature CD4(+)CD8(+) thymocytes. J Exp Med 188:1817–1830

    Article  PubMed  CAS  Google Scholar 

  • Rothwarf DM, Zandi E, Natoli G, Karin M (1998) IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex. Nature 395:297–300

    Article  PubMed  CAS  Google Scholar 

  • Sabapathy K, Hu Y, Kallunki T, Schreiber M, David JP, Jochum W, Wagner EF, Karin M (1999) JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development. Curr Biol 9:116–125

    Article  PubMed  CAS  Google Scholar 

  • Song HY, Rothe M, Goeddel DV (1996) The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-kappaB activation. Proc Natl Acad Sci USA 93:6721–6725

    Article  PubMed  CAS  Google Scholar 

  • Van Huffel S, Delaei F, Heyninck K, De Valck D, Beyaert R (2001) Identification of a novel A20-binding inhibitor of nuclear factor-kappa B activation termed ABIN-2. J Biol Chem 276:30216–30223

    Article  PubMed  Google Scholar 

  • Varin A, Decrion AZ, Sabbah E, Quivy V, Sire J, Van Lint C, Roques BP, Aggarwal BB, Herbein G (2005) Synthetic Vpr protein activates activator protein-1, c-Jun N-terminal kinase, and NF-kappaB and stimulates HIV-1 transcription in promonocytic cells and primary macrophages. J Biol Chem 280:42557–42567

    Article  PubMed  CAS  Google Scholar 

  • Wagner EF (2001) AP-1 – introductory remarks. Oncogene 20:2334–2335

    Article  PubMed  CAS  Google Scholar 

  • Weitzman JB, Fiette L, Matsuo K, Yaniv M (2000) JunD protects cells from p53-dependent senescence and apoptosis. Mol Cell 6:1109–1119

    Article  PubMed  CAS  Google Scholar 

  • Woronicz JD, Gao X, Cao Z, Rothe M, Goeddel DV (1997) IkappaB kinase-beta: NF-kappaB activation and complex formation with IkappaB kinase-alpha and NIK. Science 278:866–869

    Article  PubMed  CAS  Google Scholar 

  • Wu M, Xu LG, Zhai Z, Shu HB (2003) SINK is a p65-interacting negative regulator of NF-kappaB-dependent transcription. J Biol Chem 278:27072–27079

    Article  PubMed  CAS  Google Scholar 

  • Yamaoka S, Courtois G, Bessia C, Whiteside ST, Weil R, Agou F, Kirk HE, Kay RJ, Israel A (1998) Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell 93:1231–1240

    Article  PubMed  CAS  Google Scholar 

  • Zago MP, Mackenzie GG, Adamo AM, Keen CL, Oteiza PI (2005) Differential modulation of MAP kinases by zinc deficiency in IMR-32 cells: role of H(2)O(2). Antioxid Redox Signal 7:1773–1782

    Article  PubMed  CAS  Google Scholar 

  • Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M (1997) The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell 91:243–252

    Article  PubMed  CAS  Google Scholar 

  • Zhang SQ, Kovalenko A, Cantarella G, Wallach D (2000) Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKgamma) upon receptor stimulation. Immunity 12:301–311

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by a grant-in aid from the Canadian Institute of Health Research (No. 63149) and ZINCAGE Project (EU Contract No. FOOD-CT-2003-506850).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Georges Herbein or Tamas Fulop.

Additional information

Presented at the ZincAge Conference, Madrid, February 10–13, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herbein, G., Varin, A. & Fulop, T. NF-κB, AP-1, Zinc-deficiency and aging. Biogerontology 7, 409–419 (2006). https://doi.org/10.1007/s10522-006-9056-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-006-9056-4

Keywords

Navigation