Skip to main content

Advertisement

Log in

The unfolded protein response in the therapeutic effect of hydroxy-DHA against Alzheimer’s disease

  • THE ROLE OF SPHINGOLIPIDS AND LIPID RAFTS IN DETERMINING CELL FATE
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The unfolded protein response (UPR) and autophagy are two cellular processes involved in the clearing of intracellular misfolded proteins. Both pathways are targets for molecules that may serve as treatments for several diseases, including neurodegenerative disorders like Alzheimer’s disease (AD). In the present work, we show that 2-hydroxy-DHA (HDHA), a docosahexaenoic acid (DHA) derivate that restores cognitive function in a transgenic mouse model of AD, modulates UPR and autophagy in differentiated neuron-like SH-SY5Y cells. Mild therapeutic HDHA exposure induced UPR activation, characterized by the up-regulation of the molecular chaperone Bip as well as PERK-mediated stimulation of eIF2α phosphorylation. Key proteins involved in initiating autophagy, such as beclin-1, and several Atg proteins involved in autophagosome maturation (Atg3, Atg5, Atg12 and Atg7), were also up-regulated on exposure to HDHA. Moreover, when HDHA-mediated autophagy was studied after amyloid-β peptide (Aβ) stimulation to mimic the neurotoxic environment of AD, it was associated with increased cell survival, suggesting that HDHA driven modulation of this process at least in part mediates the neuroprotective effects of this new anti-neurodegenerative drug. The present results in part explain the pharmacological effects of HDHA inducing full recovery of the cognitive scores in murine models of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Atg:

Autophagy-related genes

AV:

Autophagic vesicle

DHA:

Docosahexenoic acid

eiF2α or eIF2α:

Eukaryotic initiation factor 2 alpha

HDHA:

2-Hydroxy-docosahexaenoic acid

IRE1:

Inositol-requiring protein 1

UPR:

Unfolded protein response

PDI:

Protein disulfide isomerase

PERK:

Protein kinase RNA-like ER kinase

References

  1. Soto C, Estrada LD (2008) Protein misfolding and neurodegeneration. Arch Neurol 65(2):184–189

    Article  PubMed  Google Scholar 

  2. Schröder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    Article  Google Scholar 

  3. Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11(4):381–389

    Article  CAS  PubMed  Google Scholar 

  4. Ding W-X, Ni H-M, Gao W, Yoshimori T, Stolz DB, Ron D, Yin X-M (2007) Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol 171(2):513–524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Ding W-X, Ni H-M, Gao W, Hou Y-F, Melan MA, Chen X, Stolz DB, Shao Z-M, Yin X-M (2007) Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem 282(7):4702–4710

    Article  CAS  PubMed  Google Scholar 

  6. Verfaillie T, Salazar M, Velasco G, Agostinis P (2010) Linking ER stress to autophagy: potential implications for cancer therapy. Int J Cell Biol 2010:930509

    Article  PubMed Central  PubMed  Google Scholar 

  7. Matus S, Lisbona F, Torres M, León C, Thielen P, Hetz C (2008) The stress rheostat: an interplay between the unfolded protein response (UPR) and autophagy in neurodegeneration. Curr Mol Med 8(3):157–172

    Article  CAS  PubMed  Google Scholar 

  8. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356

    Article  CAS  PubMed  Google Scholar 

  9. Winklhofer KF, Tatzelt J, Haass C (2008) The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases. EMBO J 27(2):336–349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Gorman AM (2008) Neuronal cell death in neurodegenerative diseases: recurring themes around protein handling. J Cell Mol Med 12(6A):2263–2280

    Article  CAS  PubMed  Google Scholar 

  11. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8(2):101–112

    Article  CAS  PubMed  Google Scholar 

  12. Gouras GK, Tampellini D, Takahashi RH, Capetillo-Zarate E (2010) Intraneuronal beta-amyloid accumulation and synapse pathology in Alzheimer’s disease. Acta Neuropathol 119(5):523–541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Lee DY, Lee K-S, Lee HJ, Kim DH, Noh YH, Yu K, Jung H-Y, Lee SH, Lee JY, Youn YC, Jeong Y, Kim DK, Lee WB, Kim SS (2010) Activation of PERK signaling attenuates Abeta-mediated ER stress. PLoS One 5(5):e10489

    Article  PubMed Central  PubMed  Google Scholar 

  14. Casas-Tinto S, Zhang Y, Sanchez-Garcia J, Gomez-Velazquez M, Rincon-Limas DE, Fernandez-Funez P (2011) The ER stress factor XBP1s prevents amyloid-beta neurotoxicity. Hum Mol Genet 20(11):2144–2160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hoozemans JJM, Veerhuis R, Van Haastert ES, Rozemuller JM, Baas F, Eikelenboom P, Scheper W (2005) The unfolded protein response is activated in Alzheimer’s disease. Acta Neuropathol 110(2):165–172

    Article  CAS  PubMed  Google Scholar 

  16. Hoozemans JJM, van Haastert ES, Nijholt DAT, Rozemuller AJM, Eikelenboom P, Scheper W (2009) The unfolded protein response is activated in pretangle neurons in Alzheimer’s disease hippocampus. Am J Pathol 174(4):1241–1251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Unterberger U, Höftberger R, Gelpi E, Flicker H, Budka H, Voigtländer T (2006) Endoplasmic reticulum stress features are prominent in Alzheimer disease but not in prion diseases in vivo. J Neuropathol Exp Neurol 65(4):348–357

    Article  CAS  PubMed  Google Scholar 

  18. O’Connor T, Sadleir KR, Maus E, Velliquette RA, Zhao J, Cole SL, Eimer WA, Hitt B, Bembinster LA, Lammich S, Lichtenthaler SF, Hébert SS, De Strooper B, Haass C, Bennett DA, Vassar R (2008) Phosphorylation of the translation initiation factor eIF2alpha increases BACE1 levels and promotes amyloidogenesis. Neuron 60(6):988–1009

    Article  PubMed Central  PubMed  Google Scholar 

  19. Katayama T, Imaizumi K, Sato N, Miyoshi K, Kudo T, Hitomi J, Morihara T, Yoneda T, Gomi F, Mori Y, Nakano Y, Takeda J, Tsuda T, Itoyama Y, Murayama O, Takashima A, St George-Hyslop P, Takeda M, Tohyama M (1999) Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nat Cell Biol 1(8):479–485

    Article  CAS  PubMed  Google Scholar 

  20. Paz Gavilán M, Vela J, Castaño A, Ramos B, del Río JC, Vitorica J, Ruano D (2006) Cellular environment facilitates protein accumulation in aged rat hippocampus. Neurobiol Aging 27(7):973–982

    Article  PubMed  Google Scholar 

  21. Gavilán MP, Pintado C, Gavilán E, Jiménez S, Ríos RM, Vitorica J, Castaño A, Ruano D (2009) Dysfunction of the unfolded protein response increases neurodegeneration in aged rat hippocampus following proteasome inhibition. Aging Cell 8(6):654–665

    Article  PubMed  Google Scholar 

  22. Hosoi T, Ozawa K (2012) Molecular approaches to the treatment, prophylaxis, and diagnosis of Alzheimer’s disease: endoplasmic reticulum stress and immunological stress in pathogenesis of Alzheimer’s disease. J Pharmacol Sci 118(3):319–324

    Article  CAS  PubMed  Google Scholar 

  23. Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee J-H, Mohan PS, Mercken M, Farmery MR, Tjernberg LO, Jiang Y, Duff K, Uchiyama Y, Näslund J, Mathews PM, Cataldo AM, Nixon RA (2005) Macroautophagy—a novel Beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol 171(1):87–98

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Sanchez-Varo R, Trujillo-Estrada L, Sanchez-Mejias E, Torres M, Baglietto-Vargas D, Moreno-Gonzalez I, De Castro V, Jimenez S, Ruano D, Vizuete M, Davila JC, Garcia-Verdugo JM, Jimenez AJ, Vitorica J, Gutierrez A (2012) Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer’s mice hippocampus. Acta Neuropathol 123(1):53–70

    Article  PubMed Central  PubMed  Google Scholar 

  25. Runz H, Rietdorf J, Tomic I, de Bernard M, Beyreuther K, Pepperkok R, Hartmann T (2002) Inhibition of intracellular cholesterol transport alters presenilin localization and amyloid precursor protein processing in neuronal cells. J Neurosci 22(5):1679–1689

    CAS  PubMed  Google Scholar 

  26. Yu WH, Kumar A, Peterhoff C, Shapiro Kulnane L, Uchiyama Y, Lamb BT, Cuervo AM, Nixon RA (2004) Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for beta-amyloid peptide over-production and localization in Alzheimer’s disease. Int J Biochem Cell Biol 36(12):2531–2540

    Article  CAS  PubMed  Google Scholar 

  27. Pasternak SH, Bagshaw RD, Guiral M, Zhang S, Ackerley CA, Pak BJ, Callahan JW, Mahuran DJ (2003) Presenilin-1, nicastrin, amyloid precursor protein, and gamma-secretase activity are co-localized in the lysosomal membrane. J Biol Chem 278(29):26687–26694

    Article  CAS  PubMed  Google Scholar 

  28. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64(2):113–122

    PubMed  Google Scholar 

  29. Nixon RA (2007) Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci 120(Pt 23):4081–4091

    Article  CAS  PubMed  Google Scholar 

  30. Torres M, Jiménez S, Sánchez-Varo R, Navarro V, Trujillo-Estrada L, Sánchez-Mejias E, Carmona I, Davila JC, Vizuete M, Gutiérrez A, Vitorica J (2012) Defective lysosomal proteolysis and axonal transport are early pathogenic events that worsen with age leading to increased APP metabolism and synaptic Abeta in transgenic APP/PS1 hippocampus. Mol Neurodegener 7:59

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Yang D-S, Stavrides P, Mohan PS, Kaushik S, Kumar A, Ohno M, Schmidt SD, Wesson D, Bandyopadhyay U, Jiang Y, Pawlik M, Peterhoff CM, Yang AJ, Wilson DA, St George-Hyslop P, Westaway D, Mathews PM, Levy E, Cuervo AM, Nixon RA (2011) Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer’s disease ameliorates amyloid pathologies and memory deficits. Brain 134(Pt 1):258–277

    Article  PubMed Central  PubMed  Google Scholar 

  32. Schaeffer V, Lavenir I, Ozcelik S, Tolnay M, Winkler DT, Goedert M (2012) Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain 135(Pt 7):2169–2177

    Article  PubMed Central  PubMed  Google Scholar 

  33. Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B, Rockenstein E, Levine B, Wyss-Coray T (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 118(6):2190–2199

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA (2008) Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J Neurosci 28(27):6926–6937

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Butler D, Hwang J, Estick C, Nishiyama A, Kumar SS, Baveghems C, Young-Oxendine HB, Wisniewski ML, Charalambides A, Bahr BA (2011) Protective effects of positive lysosomal modulation in Alzheimer’s disease transgenic mouse models. PLoS One 6(6):e20501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Barceló-Coblijn G, Martin ML, de Almeida RFM, Noguera-Salvà MA, Marcilla-Etxenike A, Guardiola-Serrano F, Lüth A, Kleuser B, Halver JE, Escribá PV (2011) Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy. Proc Natl Acad Sci USA 108(49):19569–19574

    Article  PubMed Central  PubMed  Google Scholar 

  37. Terés S, Lladó V, Higuera M, Barceló-Coblijn G, Martin ML, Noguera-Salvà MA, Marcilla-Etxenike A, García-Verdugo JM, Soriano-Navarro M, Saus C, Gómez-Pinedo U, Busquets X, Escribá PV (2012) 2-Hydroxyoleate, a nontoxic membrane binding anticancer drug, induces glioma cell differentiation and autophagy. Proc Natl Acad Sci USA 109(22):8489–8494

    Article  PubMed Central  PubMed  Google Scholar 

  38. Terés S, Lladó V, Higuera M, Barceló-Coblijn G, Martin ML, Noguera-Salvà MA, Marcilla-Etxenike A, García-Verdugo JM, Soriano-Navarro M, Saus C, Gómez-Pinedo U, Busquets X, Escribá PV (2012) Normalization of sphingomyelin levels by 2-hydroxyoleic acid induces autophagic cell death of SF767 cancer cells. Autophagy 8(10):1542–1544

    Article  PubMed Central  PubMed  Google Scholar 

  39. Marcilla-Etxenike A, Martín ML, Noguera-Salvà MA, García-Verdugo JM, Soriano-Navarro M, Dey I, Escribá PV, Busquets X (2012) 2-Hydroxyoleic acid induces ER stress and autophagy in various human glioma cell lines. PLoS One 7(10):e48235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Fiol-Deroque MA, Gutierrez-Lanza R, Terés S, Torres M, Barceló P, Rial RV, Verkhratsky A, Escribá PV, Busquets X, Rodríguez JJ (2013) Cognitive recovery and restoration of cell proliferation in the dentate gyrus in the 5XFAD transgenic mice model of Alzheimer’s disease following 2-hydroxy-DHA treatment. Biogerontology 14(6):763–775

    Article  CAS  PubMed  Google Scholar 

  41. Torres M, Price SL, Fiol-Deroque MA, Marcilla-Etxenike A, Ahyayauch H, Barceló-Coblijn G, Terés S, Katsouri L, Ordinas M, López DJ, Ibarguren M, Goñi FM, Busquets X, Vitorica J, Sastre M (1838) Escribá PV (2014) Membrane lipid modifications and therapeutic effects mediated by hydroxydocosahexaenoic acid on Alzheimer’s disease. Biochim Biophys Acta 6:1680–1692

    Google Scholar 

  42. Jämsä A, Hasslund K, Cowburn RF, Bäckström A, Vasänge M (2004) The retinoic acid and brain-derived neurotrophic factor differentiated SH-SY5Y cell line as a model for Alzheimer’s disease-like tau phosphorylation. Biochem Biophys Res Commun 319(3):993–1000

    Article  PubMed  Google Scholar 

  43. Ryan TM, Caine J, Mertens HDT, Kirby N, Nigro J, Breheney K, Waddington LJ, Streltsov VA, Curtain C, Masters CL, Roberts BR (2013) Ammonium hydroxide treatment of Aβ produces an aggregate free solution suitable for biophysical and cell culture characterization. Peer J 1:e73

    Article  PubMed Central  PubMed  Google Scholar 

  44. Planchard MS, Samel MA, Kumar A, Rangachari V (2012) The natural product betulinic acid rapidly promotes amyloid-β fibril formation at the expense of soluble oligomers. ACS Chem Neurosci 3(11):900–908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Moreth J, Kroker KS, Schwanzar D, Schnack C, von Arnim CAF, Hengerer B, Rosenbrock H, Kussmaul L (2013) Globular and protofibrillar aβ aggregates impair neurotransmission by different mechanisms. Biochemistry 52(8):1466–1476

    Article  CAS  PubMed  Google Scholar 

  46. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  CAS  PubMed  Google Scholar 

  47. Truettner JS, Hu K, Liu CL, Dietrich WD, Hu B (2009) Subcellular stress response and induction of molecular chaperones and folding proteins after transient global ischemia in rats. Brain Res 1249:9–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Bousette N, Abbasi C, Chis R, Gramolini AO (2014) Calnexin silencing in mouse neonatal cardiomyocytes induces Ca2+ cycling defects, ER stress, and apoptosis. J Cell Physiol 229(3):374–383

    Article  CAS  PubMed  Google Scholar 

  49. Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H, Ogawa S, Kaufman RJ, Kominami E, Momoi T (2007) ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 14(2):230–239

    Article  CAS  PubMed  Google Scholar 

  50. Ogata M, Hino S-I, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, Taniguchi M, Tanii I, Yoshinaga K, Shiosaka S, Hammarback JA, Urano F, Imaizumi K (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26(24):9220–9231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Sano R, Reed JC (1833) JC (2013) ER stress-induced cell death mechanisms. Biochim Biophys Acta 12:3460–3470

    Google Scholar 

  52. Nedelsky NB, Todd PK, Taylor JP (2008) Autophagy and the ubiquitin-proteasome system: collaborators in neuroprotection. Biochim Biophys Acta 1782(12):691–699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Itakura E, Kishi C, Inoue K, Mizushima N (2008) Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 19(12):5360–5372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Itakura E, Mizushima N (2009) Atg14 and UVRAG: mutually exclusive subunits of mammalian Beclin 1-PI3K complexes. Autophagy 5(4):534–536

    Article  CAS  PubMed  Google Scholar 

  55. Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, Takao T, Natsume T, Ohsumi Y, Yoshimori T (2003) Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci 116(Pt 9):1679–1688

    Article  CAS  PubMed  Google Scholar 

  56. Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118(Pt 1):7–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152(4):657–668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Mizushima N, Ohsumi Y, Yoshimori T (2002) Autophagosome formation in mammalian cells. Cell Struct Funct 27(6):421–429

    Article  PubMed  Google Scholar 

  59. Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3(6):542–545

    Article  CAS  PubMed  Google Scholar 

  60. Soura V, Stewart-Parker M, Williams TL, Ratnayaka A, Atherton J, Gorringe K, Tuffin J, Darwent E, Rambaran R, Klein W, Lacor P, Staras K, Thorpe J, Serpell LC (2012) Visualization of co-localization in Aβ42-administered neuroblastoma cells reveals lysosome damage and autophagosome accumulation related to cell death. Biochem J 441(2):579–590

    Article  CAS  PubMed  Google Scholar 

  61. Lopes FM, Schröder R, da Frota MLC, Zanotto-Filho A, Müller CB, Pires AS, Meurer RT, Colpo GD, Gelain DP, Kapczinski F, Moreira JCF, Fernandes MdC, Klamt F (2010) Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies. Brain Res 1337:85–94

    Article  CAS  PubMed  Google Scholar 

  62. Ibarguren M, López DJ, Encinar JA, González-Ros JM, Busquets X (1828) Escribá PV (2013) Partitioning of liquid-ordered/liquid-disordered membrane microdomains induced by the fluidifying effect of 2-hydroxylated fatty acid derivatives. Biochim Biophys Acta 11:2553–2563

    Google Scholar 

  63. Slagsvold JE, Pettersen CHH, Follestad T, Krokan HE, Schønberg SA (2009) The antiproliferative effect of EPA in HL60 cells is mediated by alterations in calcium homeostasis. Lipids 44(2):103–113

    Article  CAS  PubMed  Google Scholar 

  64. Crnkovic S, Riederer M, Lechleitner M, Hallström S, Malli R, Graier WF, Lindenmann J, Popper H, Olschewski H, Olschewski A, Frank S (2012) Docosahexaenoic acid-induced unfolded protein response, cell cycle arrest, and apoptosis in vascular smooth muscle cells are triggered by Ca2+-dependent induction of oxidative stress. Free Radic Biol Med 52(9):1786–1795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Jakobsen CH, Størvold GL, Bremseth H, Follestad T, Sand K, Mack M, Olsen KS, Lundemo AG, Iversen JG, Krokan HE, Schønberg SA (2008) DHA induces ER stress and growth arrest in human colon cancer cells: associations with cholesterol and calcium homeostasis. J Lipid Res 49(10):2089–2100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Caviglia JM, Gayet C, Ota T, Hernandez-Ono A, Conlon DM, Jiang H, Fisher EA, Ginsberg HN (2011) Different fatty acids inhibit apoB100 secretion by different pathways: unique roles for ER stress, ceramide, and autophagy. J Lipid Res 52(9):1636–1651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Irwin S (1968) Comprehensive observational assessment: Ia. A systematic, quantitative procedure for assessing the behavioral and physiologic state of the mouse. Psychopharmacologia 13(3):222–257

    Article  CAS  PubMed  Google Scholar 

  68. Gade P, Ramachandran G, Maachani UB, Rizzo MA, Okada T, Prywes R, Cross AS, Mori K, Kalvakolanu DV (2012) An IFN-γ-stimulated ATF6-C/EBP-β-signaling pathway critical for the expression of Death Associated Protein Kinase 1 and induction of autophagy. Proc Natl Acad Sci USA 109(26):10316–10321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Shin S, Jing K, Jeong S, Kim N, Song K-S, Heo J-Y, Park J-H, Seo K-S, Han J, Park J-I, Kweon G-R, Park S-K, Wu T, Hwang B-D, Lim K (2013) The omega-3 polyunsaturated fatty acid DHA induces simultaneous apoptosis and autophagy via mitochondrial ROS-mediated Akt-mTOR signaling in prostate cancer cells expressing mutant p53. Biomed Res Int 2013:568671

    Article  PubMed Central  PubMed  Google Scholar 

  70. Jing K, Song K-S, Shin S, Kim N, Jeong S, Oh H-R, Park J-H, Seo K-S, Heo J-Y, Han J, Park J-I, Han C, Wu T, Kweon G-R, Park S-K, Yoon W-H, Hwang B-D, Lim K (2011) Docosahexaenoic acid induces autophagy through p53/AMPK/mTOR signaling and promotes apoptosis in human cancer cells harboring wild-type p53. Autophagy 7(11):1348–1358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Zhao Y, Calon F, Julien C, Winkler JW, Petasis NA, Lukiw WJ, Bazan NG (2011) Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secretase- and PPARγ-mediated mechanisms in Alzheimer’s disease models. PLoS One 6(1):e15816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Vogler O, Lopez-Bellan A, Alemany R, Tofe S, Gonzalez M, Quevedo J, Pereg V, Barcelo F, Escriba PV (2007) Structure-effect relation of C18 long-chain fatty acids in the reduction of body weight in rats. Int J Obes 32(3):464–473

    Article  Google Scholar 

  73. Rovito D, Giordano C, Vizza D, Plastina P, Barone I, Casaburi I, Lanzino M, De Amicis F, Sisci D, Mauro L, Aquila S, Catalano S, Bonofiglio D, Andò S (2013) Omega-3 PUFA ethanolamides DHEA and EPEA induce autophagy through PPARγ activation in MCF-7 breast cancer cells. J Cell Physiol 228(6):1314–1322

    Article  CAS  PubMed  Google Scholar 

  74. Cai Z, Zhao B, Li K, Zhang L, Li C, Quazi SH, Tan Y (2012) Mammalian target of rapamycin: a valid therapeutic target through the autophagy pathway for Alzheimer’s disease? J Neurosci Res 90(6):1105–1118

    Article  CAS  PubMed  Google Scholar 

  75. Yang Y, Turner RS, Gaut JR (1998) The chaperone BiP/GRP78 binds to amyloid precursor protein and decreases Abeta40 and Abeta42 secretion. J Biol Chem 273(40):25552–25555

    Article  CAS  PubMed  Google Scholar 

  76. Hernández F, Avila J (2007) Tauopathies. Cell Mol Life Sci 64(17):2219–2233

    Article  PubMed  Google Scholar 

  77. Wang Y, Martinez-Vicente M, Krüger U, Kaushik S, Wong E, Mandelkow E-M, Cuervo AM, Mandelkow E (2009) Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum Mol Genet 18(21):4153–4170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the Spanish Ministerio de Economía y Competitividad (BIO2010-21132, BIO2013-49006-C2-1-R, and IPT-010000-2010-16, PVE and XB), by grants to research groups of excellence from the Govern de les Illes Balears, Spain (PVE) and by the Marathon Foundation (Spain). MT was recipient of a Torres-Quevedo research contract from the Spanish Ministerio de Economía y Competitividad and the European Social Fund “Investing in your future”.  AM-E was recipient of an undergraduate fellowship from the Spanish Ministerio de Economía y Competitividad. MAF-dR was funded by a fellowship from the Govern de les Illes Balears (Conselleria d’Educació, Cultura i Universitats) operational program co-funded by the European Social Fund.

Conflict of interest

MT was supported by a Torres-Quevedo Research Contract granted to Lipopharma Therapeutics, S.L. by Ministerio de Economía y Competitividad (Spanish Government) and the European Social Fund “Investing in your future”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo V. Escribá.

Additional information

Manuel Torres, Amaia Marcilla-Etxenike, and Maria A. Fiol-deRoque contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10495_2015_1099_MOESM1_ESM.tif

SH-SY5Y neuroblastoma cell differentiation into neuron-like cells. A Representative phase-contrast micrographs (×20 magnification) of undifferentiated SH-SY5Y cells, cells maintained in the presence of RA for 5 days and SH-SY5Y cells completely differentiated with RA + hBDNF (human brain-derived neurotrophic factor). B Nestin levels determined by immunoblotting in undifferentiated (ND) and differentiated (D) SH-SY5Y cells. C Proportion of SH-SY5Y cells in Sub-G1, G1, S and G2/M phases with respect to the total cell number. D Cdk4, E Cdk6, F DHFR, G Cyclin D3 protein levels determined by immunoblotting in undifferentiated (ND) and differentiated (D) SH-SY5Y cells. Immunoblot values are expressed relative to the undifferentiated cells and each bar diagram shows the mean ± SEM. The asterisks indicate a significant difference compared to the undifferentiated cells: ***p<0.001 (TIFF 3803 kb)

Supplementary material 2 (PDF 57 kb)

10495_2015_1099_MOESM3_ESM.tif

Weight of control and HDHA-treated mice. The weight of WT and 5xFAD (AD transgenic model) mice was monitored three times a week for a whole period of treatment of 3 months with HDHA at 200 mg/kg.day (or vehicle, controls) Mice treatment conditions were described previously (see references [40,41]). The data are presented as the percentage change relative to the first day of treatment. Each point shows the mean value from 4 animals ± SEM (TIFF 2525 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, M., Marcilla-Etxenike, A., Fiol-deRoque, M.A. et al. The unfolded protein response in the therapeutic effect of hydroxy-DHA against Alzheimer’s disease. Apoptosis 20, 712–724 (2015). https://doi.org/10.1007/s10495-015-1099-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-015-1099-z

Keywords

Navigation