Skip to main content
Log in

Hydrogen sulfide improves left ventricular function in smoking rats via regulation of apoptosis and autophagy

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The present study was designed to investigate the protective effects of hydrogen sulfide (H2S) against cigarette smoking-induced left ventricular dysfunction in rats. Left ventricular structure and function were assessed using two-dimensional echocardiography. Cardiomyocyte apoptosis was determined by Annexin V/PI and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining. Cardiac autophagy was evaluated by detection of autophagy-related protein expression and observation of autophagosomes. Our results indicated that administration of NaHS (a donor of H2S) could protect against smoking-induced left ventricular systolic dysfunction. H2S was found to exert anti-apoptotic effects in the myocardium of smoking rats by inhibiting JNK and P38 mitogen-activated protein kinases pathways and activating PI3K/Akt signaling. Moreover, H2S could also reduce smoking-induced autophagic cell death via regulation of AMPK/mTOR signaling pathway. In conclusion, our study demonstrates that H2S can improve left ventricular systolic function in smoking rats via regulation of apoptosis and autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Burns DM (2003) Epidemiology of smoking-induced cardiovascular disease. Prog Cardiovasc Dis 46(1):11–29

    Article  PubMed  Google Scholar 

  2. Tonstad S, Andrew Johnston J (2006) Cardiovascular risks associated with smoking: a review for clinicians. Eur J Cardiovasc Prev Rehabil 13(4):507–514

    Article  PubMed  Google Scholar 

  3. Erhardt L (2009) Cigarette smoking: an undertreated risk factor for cardiovascular disease. Atherosclerosis 205(1):23–32

    Article  CAS  PubMed  Google Scholar 

  4. Zhou X, Li C, Xu W, Chen J (2012) Trimetazidine protects against smoking-induced left ventricular remodeling via attenuating oxidative stress, apoptosis, and inflammation. PLoS ONE 7(7):e40424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Zhou X, Li C, Xu W, Chen J (2013) Protective effects of valsartan against cigarette smoke-induced left ventricular systolic dysfunction in rats. Int J Cardiol 167(3):677–680

    Article  PubMed  Google Scholar 

  6. Elrod JW, Calvert JW, Morrison J, Doeller JE, Kraus DW, Tao L, Jiao X, Scalia R, Kiss L, Szabo C, Kimura H, Chow CW, Lefer DJ (2007) Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci USA 104(39):15560–15565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Yao LL, Huang XW, Wang YG, Cao YX, Zhang CC, Zhu YC (2010) Hydrogen sulfide protects cardiomyocytes from hypoxia/reoxygenation-induced apoptosis by preventing GSK-3beta-dependent opening of mPTP. Am J Physiol Heart Circ Physiol 298(5):H1310–H1319

    Article  CAS  PubMed  Google Scholar 

  8. Sun YG, Cao YX, Wang WW, Ma SF, Yao T, Zhu YC (2008) Hydrogen sulphide is an inhibitor of L-type calcium channels and mechanical contraction in rat cardiomyocytes. Cardiovasc Res 79(4):632–641

    Article  CAS  PubMed  Google Scholar 

  9. Chunyu Z, Junbao D, Dingfang B, Hui Y, Xiuying T, Chaoshu T (2003) The regulatory effect of hydrogen sulfide on hypoxic pulmonary hypertension in rats. Biochem Biophys Res Commun 302(4):810–816

    Article  PubMed  Google Scholar 

  10. Su YW, Liang C, Jin HF, Tang XY, Han W, Chai LJ, Zhang CY, Geng B, Tang CS, Du JB (2009) Hydrogen sulfide regulates cardiac function and structure in adriamycin-induced cardiomyopathy. Circ J 73(4):741–749

    Article  CAS  PubMed  Google Scholar 

  11. Mughal W, Dhingra R, Kirshenbaum LA (2012) Striking a balance: autophagy, apoptosis, and necrosis in a normal and failing heart. Curr Hypertens Rep 14(6):540–547

    Article  CAS  PubMed  Google Scholar 

  12. Nishida K, Otsu K (2008) Cell death in heart failure. Circ J 72(Suppl A):A17–A21

    Article  PubMed  Google Scholar 

  13. Lee Y, Gustafsson AB (2009) Role of apoptosis in cardiovascular disease. Apoptosis 14(4):536–548

    Article  PubMed  Google Scholar 

  14. Narula J, Haider N, Arbustini E, Chandrashekhar Y (2006) Mechanisms of disease: apoptosis in heart failure—seeing hope in death. Nat Clin Pract Cardiovasc Med 3(12):681–688

    Article  CAS  PubMed  Google Scholar 

  15. Nishida K, Kyoi S, Yamaguchi O, Sadoshima J, Otsu K (2009) The role of autophagy in the heart. Cell Death Differ 16(1):31–38

    Article  CAS  PubMed  Google Scholar 

  16. Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16(6):663–669

    Article  CAS  PubMed  Google Scholar 

  17. Gupta S, Kass GE, Szegezdi E, Joseph B (2009) The mitochondrial death pathway: a promising therapeutic target in diseases. J Cell Mol Med 13(6):1004–1033

    Article  CAS  PubMed  Google Scholar 

  18. Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5(11):897–907

    Article  CAS  PubMed  Google Scholar 

  19. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9(1):47–59

    Article  CAS  PubMed  Google Scholar 

  20. Brunelle JK, Letai A (2009) Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci 122(Pt 4):437–441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410(6824):37–40

    Article  CAS  PubMed  Google Scholar 

  22. Raman M, Chen W, Cobb MH (2007) Differential regulation and properties of MAPKs. Oncogene 26(22):3100–3112

    Article  CAS  PubMed  Google Scholar 

  23. Franke TF (2008) PI3K/Akt: getting it right matters. Oncogene 27(50):6473–6488

    Article  CAS  PubMed  Google Scholar 

  24. Vasudevan KM, Garraway LA (2010) AKT signaling in physiology and disease. Curr Top Microbiol Immunol 347:105–133

    CAS  PubMed  Google Scholar 

  25. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) mTOR regulation of autophagy. FEBS Lett 584(7):1287–1295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., An, G. & Chen, J. Hydrogen sulfide improves left ventricular function in smoking rats via regulation of apoptosis and autophagy. Apoptosis 19, 998–1005 (2014). https://doi.org/10.1007/s10495-014-0978-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-0978-z

Keywords

Navigation