Skip to main content
Log in

Apigenin induces apoptosis by targeting inhibitor of apoptosis proteins and Ku70–Bax interaction in prostate cancer

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Dysfunction of the apoptotic pathway in prostate cancer cells confers apoptosis resistance towards various therapies. A novel strategy to overcome resistance is to directly target the apoptotic pathway in cancer cells. Apigenin, an anticancer agent, selectively toxic to cancer cells induces cell cycle arrest and apoptosis through mechanisms which are not fully explored. In the present study we provide novel insight into the mechanisms of apoptosis induction by apigenin. Treatment of androgen-refractory human prostate cancer PC-3 and DU145 cells with apigenin resulted in dose-dependent suppression of XIAP, c-IAP1, c-IAP2 and survivin protein levels. Apigenin treatment resulted in significant decrease in cell viability and apoptosis induction with the increase of cytochrome C in time-dependent manner. These effects of apigenin were accompanied by decrease in Bcl-xL and Bcl-2 and increase in the active form of Bax protein. The apigenin-mediated increase in Bax was due to dissociation of Bax from Ku70 which is essential for apoptotic activity of Bax. Apigenin treatment resulted in the inhibition of class I histone deacetylases and HDAC1 protein expression, thereby increasing the acetylation of Ku70 and the dissociation of Bax resulting in apoptosis of cancer cells. Furthermore, apigenin significantly reduced HDAC1 occupancy at the XIAP promoter, suggesting that histone deacetylation might be critical for XIAP downregulation. These results suggest that apigenin targets inhibitor of apoptosis proteins and Ku70–Bax interaction in the induction of apoptosis in prostate cancer cells and in athymic nude mouse xenograft model endorsing its in vivo efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

IAP:

Inhibitor of apoptosis protein

XIAP:

X-linked inhibitor of apoptosis

HDAC:

Histone deacetylases

NF-κB:

Nuclear factor kappa-B

IGF:

Insulin-like growth factor

PI3K:

Phosphoinositide 3-kinase

HIF:

Hypoxia-inducible factor

MAPK:

Mitogen-activated protein kinases

SAHA:

Suberoylanilide hydroxamic acid

TSA:

Trichostatin A

References

  1. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30

    Article  PubMed  Google Scholar 

  2. Prostate cancer facts and statistics on the American Cancer Society website at: http://www.cancer.org/cancer/prostatecancer/index

  3. Moul JW, Mouraviev V, Sun L, Schroeck FR, Polascik TJ (2009) Prostate cancer: the new landscape. Curr Opin Urol 19:154–160

    Article  PubMed  Google Scholar 

  4. Punnen S, Cooperberg MR, D’Amico AV, Karakiewicz PI, Moul JW, Scher HI, Schlomm T, Freedland SJ (2013) Management of biochemical recurrence after primary treatment of prostate cancer: a systematic review of the literature. Eur Urol. doi: 10.1016/j.eururo.2013.05.025. [Epub ahead of print] PubMed PMID: 23721958

  5. Tsai HT, Penson DF, Makambi KH, Lynch JH, Van Den Eeden SK, Potosky AL (2013) Efficacy of intermittent androgen deprivation therapy vs. conventional continuous androgen deprivation therapy for advanced prostate cancer: a meta-analysis. Urology 82(2):327–333

    Article  PubMed  Google Scholar 

  6. Gupta K, Thakur VS, Bhaskaran N, Nawab A, Babcook MA, Jackson MW, Gupta S (2012) Green tea polyphenols induce p53-dependent and p53-independent apoptosis in prostate cancer cells through two distinct mechanisms. PLoS ONE 7:e52572

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Deveraux QL, Schendel SL, Reed JC (2001) Antiapoptotic proteins. The bcl-2 and inhibitor of apoptosis protein families. Cardiol Clin 19:57–74

    Article  PubMed  CAS  Google Scholar 

  8. McEleny KR, Watson RW, Coffey RN, O’Neill AJ, Fitzpatrick JM (2002) Inhibitors of apoptosis proteins in prostate cancer cell lines. Prostate 51:133–140

    Article  PubMed  CAS  Google Scholar 

  9. Yang L, Cao Z, Yan H, Wood WC (2003) Coexistence of high levels of apoptotic signaling and inhibitor of apoptosis proteins in human tumor cells: implication for cancer specific therapy. Cancer Res 63:6815–6824

    PubMed  CAS  Google Scholar 

  10. Krajewska M, Krajewski S, Banares S, Huang X, Turner B, Bubendorf L, Kallioniemi OP, Shabaik A, Vitiello A, Peehl D, Gao GJ, Reed JC (2003) Elevated expression of inhibitor of apoptosis proteins in prostate cancer. Clin Cancer Res 9:4914–4925

    PubMed  CAS  Google Scholar 

  11. Dubrez-Daloz L, Dupoux A, Cartier J (2008) IAPs: more than just inhibitors of apoptosis proteins. Cell Cycle 7:1036–1046

    Article  PubMed  CAS  Google Scholar 

  12. Seligson DB, Hongo F, Huerta-Yepez S, Mizutani Y, Miki T, Yu H, Horvath S, Chia D, Goodglick L, Bonavida B (2007) Expression of X-linked inhibitor of apoptosis protein is a strong predictor of human prostate cancer recurrence. Clin Cancer Res 13:6056–6063

    Article  PubMed  CAS  Google Scholar 

  13. Shariat SF, Lotan Y, Saboorian H, Khoddami SM, Roehrborn CG, Slawin KM, Ashfaq R (2004) Survivin expression is associated with features of biologically aggressive prostate carcinoma. Cancer 100:751–757

    Article  PubMed  CAS  Google Scholar 

  14. van Delft MF, Huang DC (2006) How the Bcl-2 family of proteins interact to regulate apoptosis. Cell Res 16:203–213

    Article  PubMed  CAS  Google Scholar 

  15. Sawada M, Sun W, Hayes P, Leskov K, Boothman DA, Matsuyama S (2003) Ku70 suppresses the apoptotic translocation of Bax to mitochondria. Nat Cell Biol 5:320–329

    Article  PubMed  CAS  Google Scholar 

  16. Cohen HY, Lavu S, Bitterman KJ, Hekking B, Imahiyerobo TA, Miller C, Frye R, Ploegh H, Kessler BM, Sinclair DA (2004) Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell 13:627–638

    Article  PubMed  CAS  Google Scholar 

  17. Chen CS, Wang YC, Yang HC, Huang PH, Kulp SK, Yang CC, Lu YS, Matsuyama S, Chen CY, Chen CS (2007) Histone deacetylase inhibitors sensitize prostate cancer cells to agents that produce DNA double-strand breaks by targeting Ku70 acetylation. Cancer Res 67:5318–5327

    Article  PubMed  CAS  Google Scholar 

  18. Cohen HY, Lavu S, Bitterman KJ, Hekking B, Imahiyerobo TA, Miller C, Frye R, Ploegh H, Kessler BM, Sinclair DA (2004) Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell 13:627–638

    Article  PubMed  CAS  Google Scholar 

  19. Gullo C, Au M, Feng G, Teoh G (2006) The biology of Ku and its potential oncogenic role in cancer. Biochim Biophys Acta 1765:223–2234

    PubMed  CAS  Google Scholar 

  20. Khan N, Adhami VM, Mukhtar H (2010) Apoptosis by dietary agents for prevention and treatment of prostate cancer. Endocr Relat Cancer 17:R39–R52

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Kim SH, Bommareddy A, Singh SV (2011) Garlic constituent diallyl trisulfide suppresses x-linked inhibitor of apoptosis protein in prostate cancer cells in culture and in vivo. Cancer Prev Res (Phila) 4:897–906

    Article  CAS  Google Scholar 

  22. Sakao K, Desineni S, Hahm ER, Singh SV (2012) Phenethyl isothiocyanate suppresses inhibitor of apoptosis family protein expression in prostate cancer cells in culture and in vivo. Prostate 72:1104–1116

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Shukla S, Gupta S (2010) Apigenin: a promising molecule for cancer prevention. Pharm Res 27:962–978

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Kyle JA, Sharp L, Little J, Duthie GG, McNeill G (2010) Dietary flavonoid intake and colorectal cancer: a case–control study. Br J Nutr 103:429–436

    Article  PubMed  CAS  Google Scholar 

  25. Tang NP, Zhou B, Wang B, Yu RB, Ma J (2009) Flavonoids intake and risk of lung cancer: a meta-analysis. Jpn J Clin Oncol 39:352–359

    Article  PubMed  Google Scholar 

  26. Peterson J, Lagiou P, Samoli E, Lagiou A, Katsouyanni K, La Vecchia C, Dwyer J, Trichopoulos D (2003) Flavonoid intake and breast cancer risk: a case–control study in Greece. Br J Cancer 89:1255–1259

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Gupta S, Afaq F, Mukhtar H (2002) Involvement of nuclear factor-kappa B, Bax and Bcl-2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells. Oncogene 21:3727–3738

    Article  PubMed  CAS  Google Scholar 

  28. Shukla S, MacLennan GT, Fu P, Gupta S (2012) Apigenin attenuates insulin-like growth factor-I signaling in an autochthonous mouse prostate cancer model. Pharm Res 29:1506–1517

    Article  PubMed  CAS  Google Scholar 

  29. Shukla S, Bhaskaran N, Babcook MA, Fu P, Maclennan GT, Gupta S. (2013) Apigenin inhibits prostate cancer progression in TRAMP mice via targeting PI3K/Akt/FoxO pathway. Carcinogenesis. [Epub ahead of print] PubMed PMID: 24067903

  30. Mirzoeva S, Kim ND, Chiu K, Franzen CA, Bergan RC, Pelling JC (2008) Inhibition of HIF-1 alpha and VEGF expression by the chemopreventive bioflavonoid apigenin is accompanied by Akt inhibition in human prostate carcinoma PC3-M cells. Mol Carcinog 47:686–700

    Article  PubMed  CAS  Google Scholar 

  31. Shukla S, MacLennan GT, Flask CA, Fu P, Mishra A, Resnick MI, Gupta S (2007) Blockade of beta-catenin signaling by plant flavonoid apigenin suppresses prostate carcinogenesis in TRAMP mice. Cancer Res 67:6925–6935

    Article  PubMed  CAS  Google Scholar 

  32. Shukla S, Gupta S (2008) Apigenin-induced prostate cancer cell death is initiated by reactive oxygen species and p53 activation. Free Radic Biol Med 44:1833–1845

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Shukla S, Gupta S (2007) Apigenin-induced cell cycle arrest is mediated by modulation of MAPK, PI3K-Akt, and loss of cyclin D1 associated retinoblastoma dephosphorylation in human prostate cancer cells. Cell Cycle 6:1102–1114

    Article  PubMed  CAS  Google Scholar 

  34. Franzen CA, Amargo E, Todorović V, Desai BV, Huda S, Mirzoeva S, Chiu K, Grzybowski BA, Chew TL, Green KJ, Pelling JC (2009) The chemopreventive bioflavonoid apigenin inhibits prostate cancer cell motility through the focal adhesion kinase/Src signaling mechanism. Cancer Prev Res (Phila) 2:830–841

    Article  CAS  Google Scholar 

  35. Shukla S, Gupta S (2004) Molecular mechanisms for apigenin-induced cell-cycle arrest and apoptosis of hormone refractory human prostate carcinoma DU145 cells. Mol Carcinog 39:114–126

    Article  PubMed  CAS  Google Scholar 

  36. Pandey M, Kaur P, Shukla S, Abbas A, Fu P, Gupta S (2012) Plant flavone apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: in vitro and in vivo study. Mol Carcinog 51:952–962

    Article  PubMed  CAS  Google Scholar 

  37. Hollman PC, Katan MB (1999) Dietary flavonoids: intake, health effects and bioavailability. Food Chem Toxicol 37:937–942

    Article  PubMed  CAS  Google Scholar 

  38. Devi GR (2004) XIAP as target for therapeutic apoptosis in prostate cancer. Drug News Perspect 17:127–1234

    Article  PubMed  CAS  Google Scholar 

  39. de Almagro MC, Vucic D (2012) The inhibitor of apoptosis (IAP) proteins are critical regulators of signaling pathways and targets for anti-cancer therapy. Exp Oncol 34:200–211

    PubMed  Google Scholar 

  40. LaCasse EC, Mahoney DJ, Cheung HH, Plenchette S, Baird S, Korneluk RG (2008) IAP-targeted therapies for cancer. Oncogene 27:6252–6275

    Article  PubMed  CAS  Google Scholar 

  41. Rodríguez-Berriguete G, Fraile B, de Bethencourt FR, Prieto-Folgado A, Bartolome N, Nuñez C, Prati B, Martínez-Onsurbe P, Olmedilla G, Paniagua R, Royuela M (2010) Role of IAPs in prostate cancer progression: immunohistochemical study in normal and pathological (benign hyperplastic, prostatic intraepithelial neoplasia and cancer) human prostate. BMC Cancer 10:18

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Nakano Y, Bilim V, Yuuki K, Muto A, Kato T, Nagaoka A, Tomita Y (2009) Molecular targeting of Bcl-2 overcomes prostate cancer cell adaptation to XIAP gene downregulation. Prostate Cancer Prostatic Dis 12:34–40

    Article  PubMed  CAS  Google Scholar 

  43. Lu M, Lin SC, Huang Y, Kang YJ, Rich R, Lo YC, Myszka D, Han J, Wu H (2007) XIAP induces NF-kappaB activation via the BIR1/TAB 1 interaction and BIR1 dimerization. Mol Cell 26:689–702

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Ho CY, Wong CH, Li HY (2008) Perturbation of the chromosomal binding of RCC1, Mad2 and survivin causes spindle assembly defects and mitotic catastrophe. J Cell Biochem 105:835–846

    Article  PubMed  CAS  Google Scholar 

  45. McEleny K, Coffey R, Morrissey C, Williamson K, Zangemeister-Wittke U, Fitzpatrick JM, Watson RW (2004) An antisense oligonucleotide to cIAP-1 sensitizes prostate cancer cells to Fas and TNFalpha mediated apoptosis. Prostate 59:419–425

    Article  PubMed  CAS  Google Scholar 

  46. Gill C, Dowling C, O’Neill AJ, Watson RW (2009) Effects of cIAP-1, cIAP-2 and XIAP triple knockdown on prostate cancer cell susceptibility to apoptosis, cell survival and proliferation. Mol Cancer 8:39

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Kondo Y, Shen L, Cheng AS, Ahmed S, Boumber Y, Charo C, Yamochi T, Urano T, Furukawa K, Kwabi-Addo B, Gold DL, Sekido Y, Huang TH, Issa JP (2008) Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet 40:741–750

    Article  PubMed  CAS  Google Scholar 

  48. Weichert W, Röske A, Gekeler V, Beckers T, Stephan C, Jung K, Fritzsche FR, Niesporek S, Denkert C, Dietel M, Kristiansen G (2008) Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. Br J Cancer 98:604–610

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Halkidou K, Gaughan L, Cook S, Leung HY, Neal DE, Robson CN (2004) Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate 59:177–189

    Article  PubMed  CAS  Google Scholar 

  50. Gabrielli B, Brown M (2012) Histone deacetylase inhibitors disrupt the mitotic spindle assembly checkpoint by targeting histone and nonhistone proteins. Adv Cancer Res 116:1–37

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from United States Public Health Services RO1CA108512, RO1AT002709 to SG and RO3CA1376676 to SS.

Conflict of interest

The authors have no competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukla, S., Fu, P. & Gupta, S. Apigenin induces apoptosis by targeting inhibitor of apoptosis proteins and Ku70–Bax interaction in prostate cancer. Apoptosis 19, 883–894 (2014). https://doi.org/10.1007/s10495-014-0971-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-0971-6

Keywords

Navigation