Skip to main content
Log in

A novel dRYBP–SCF complex functions to inhibit apoptosis in Drosophila

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

A balanced response to intrinsic and extrinsic apoptotic signals is crucial to support homeostatic development and animal survival. Regulation of activation and inhibition of apoptotic pathways involves diverse mechanisms including protein ubiquitylation to control expression levels of apoptotic factors. Here we report that drosophila Ring and YY1 Binding Protein (dRYBP) protein interacts both genetically and biochemically with the E3 ubiquitin ligase SKPA, dCULLIN, F-box (SCF) complex to synergistically inhibit apoptosis in Drosophila. Further, we show that the loss of skpA function activates the intrinsic pathway of apoptosis and down-regulates the levels of expression of the anti-apoptotic DIAP1 protein. Accordingly, the apoptosis induced by inactivation of skpA and dRYBP is rescued by loss of function of the pro-apoptotic gene reaper and overexpression of DIAP1. Of interest, we also find that high levels of SKPA protein rescue the wing phenotype induced by overexpression of Reaper protein. Finally, we demonstrate that overexpression of SKPA inhibits both developmental and radiation-induced apoptosis. We propose that the function of the dRYBP–SCF complex in the inhibition of apoptosis might possibly be to control the levels of the pro-apoptotic and anti-apoptotic proteins most likely by promoting their ubiquitylation and consequently, proteasomal degradation. Given the evolutionary conservation of the dRYBP and the SCF proteins, our results suggest that their mammalian homologs may function in balancing cell survival versus cell death during normal and pathological development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Conradt B (2009) Genetic control of programmed cell death during animal development. Annu Rev Genet 43:493–523

    Article  PubMed  CAS  Google Scholar 

  2. Favaloro B, Allocati N, Graziano V, Di Ilio C, De Laurenzi V (2012) Role of apoptosis in disease. Aging 4(5):330–349

    PubMed  CAS  Google Scholar 

  3. Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147(4):742–758

    Article  PubMed  CAS  Google Scholar 

  4. Steller H (1995) Mechanisms and genes of cellular suicide. Science 267(5203):1445–1449

    Article  PubMed  CAS  Google Scholar 

  5. MacKenzie SH, Clark AC (2012) Death by caspase dimerization. Adv Exp Med Biol 747:55–73

    Article  PubMed  CAS  Google Scholar 

  6. Wing JP, Schwartz LM, Nambu JR (2001) The RHG motifs of Drosophila Reaper and Grim are important for their distinct cell death-inducing abilities. Mech Dev 102(1–2):193–203

    Article  PubMed  CAS  Google Scholar 

  7. Hay BA, Wassarman DA, Rubin GM (1995) Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 83(7):1253–1262

    Article  PubMed  CAS  Google Scholar 

  8. Bergmann A (2010) The role of ubiquitylation for the control of cell death in Drosophila. Cell Death Differ 17(1):61–67

    Article  PubMed  CAS  Google Scholar 

  9. Ciechanover A, Heller H, Elias S, Haas AL, Hershko A (1980) ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proc Natl Acad Sci USA 77(3):1365–1368

    Article  PubMed  CAS  Google Scholar 

  10. Hershko A, Ciechanover A, Rose IA (1979) Resolution of the ATP-dependent proteolytic system from reticulocytes: a component that interacts with ATP. Proc Natl Acad Sci USA 76(7):3107–3110

    Article  PubMed  CAS  Google Scholar 

  11. Olson MR, Holley CL, Yoo SJ, Huh JR, Hay BA, Kornbluth S (2003) Reaper is regulated by IAP-mediated ubiquitination. J Biol Chem 278(6):4028–4034

    Article  PubMed  CAS  Google Scholar 

  12. Holley CL, Olson MR, Colon-Ramos DA, Kornbluth S (2002) Reaper eliminates IAP proteins through stimulated IAP degradation and generalized translational inhibition. Nat Cell Biol 4(6):439–444

    Article  PubMed  CAS  Google Scholar 

  13. Ryoo HD, Bergmann A, Gonen H, Ciechanover A, Steller H (2002) Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1. Nat Cell Biol 4(6):432–438

    Article  PubMed  CAS  Google Scholar 

  14. Yoo SJ, Huh JR, Muro I, Yu H, Wang L, Wang SL, Feldman RM, Clem RJ, Muller HA, Hay BA (2002) Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nat Cell Biol 4(6):416–424

    Article  PubMed  CAS  Google Scholar 

  15. Cardozo T, Pagano M (2004) The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol 5(9):739–751

    Article  PubMed  CAS  Google Scholar 

  16. Jackson PK, Eldridge AG (2002) The SCF ubiquitin ligase: an extended look. Mol Cell 9(5):923–925

    Article  PubMed  CAS  Google Scholar 

  17. Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW (1997) F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin–ligase complex. Cell 91(2):209–219

    Article  PubMed  CAS  Google Scholar 

  18. Feldman RM, Correll CC, Kaplan KB, Deshaies RJ (1997) A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91(2):221–230

    Article  PubMed  CAS  Google Scholar 

  19. Sundqvist A, Bengoechea-Alonso MT, Ye X, Lukiyanchuk V, Jin J, Harper JW, Ericsson J (2005) Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7). Cell Metab 1(6):379–391

    Article  PubMed  CAS  Google Scholar 

  20. Inuzuka H, Shaik S, Onoyama I, Gao D, Tseng A, Maser RS, Zhai B, Wan L, Gutierrez A, Lau AW, Xiao Y, Christie AL, Aster J, Settleman J, Gygi SP, Kung AL, Look T, Nakayama KI, DePinho RA, Wei W (2011) SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature 471(7336):104–109

    Article  PubMed  CAS  Google Scholar 

  21. Marikawa Y, Elinson RP (1999) Relationship of vegetal cortical dorsal factors in the Xenopus egg with the Wnt/beta-catenin signaling pathway. Mech Dev 89(1–2):93–102

    Article  PubMed  CAS  Google Scholar 

  22. Silverman JS, Skaar JR, Pagano M (2012) SCF ubiquitin ligases in the maintenance of genome stability. Trends Biochem Sci 37(2):66–73

    Article  PubMed  CAS  Google Scholar 

  23. Alam SL, Sun J, Payne M, Welch BD, Blake BK, Davis DR, Meyer HH, Emr SD, Sundquist WI (2004) Ubiquitin interactions of NZF zinc fingers. EMBO J 23(7):1411–1421

    Article  PubMed  CAS  Google Scholar 

  24. Gonzalez I, Aparicio R, Busturia A (2008) Functional characterization of the dRYBP gene in Drosophila. Genetics 179(3):1373–1388

    Article  PubMed  CAS  Google Scholar 

  25. Arrigoni R, Alam SL, Wamstad JA, Bardwell VJ, Sundquist WI, Schreiber-Agus N (2006) The Polycomb-associated protein Rybp is a ubiquitin binding protein. FEBS Lett 580(26):6233–6241

    Article  PubMed  CAS  Google Scholar 

  26. Gonzalez I, Busturia A (2009) High levels of dRYBP induce apoptosis in Drosophila imaginal cells through the activation of reaper and the requirement of trithorax, dredd and dFADD. Cell Res 19(6):747–757

    Article  PubMed  CAS  Google Scholar 

  27. Novak RL, Phillips AC (2008) Adenoviral-mediated Rybp expression promotes tumor cell-specific apoptosis. Cancer Gene Ther 15(11):713–722

    Article  PubMed  CAS  Google Scholar 

  28. Danen-van Oorschot AA, Voskamp P, Seelen MC, van Miltenburg MH, Bolk MW, Tait SW, Boesen-de Cock JG, Rohn JL, Borst J, Noteborn MH (2004) Human death effector domain-associated factor interacts with the viral apoptosis agonist Apoptin and exerts tumor-preferential cell killing. Cell Death Differ 11(5):564–573

    Article  PubMed  CAS  Google Scholar 

  29. Stanton SE, Blanck JK, Locker J, Schreiber-Agus N (2007) Rybp interacts with Hippi and enhances Hippi-mediated apoptosis. Apoptosis 12(12):2197–2206

    Article  PubMed  CAS  Google Scholar 

  30. Zheng L, Schickling O, Peter ME, Lenardo MJ (2001) The death effector domain-associated factor plays distinct regulatory roles in the nucleus and cytoplasm. J Biol Chem 276(34):31945–31952

    Article  PubMed  CAS  Google Scholar 

  31. Bocca SN, Muzzopappa M, Silberstein S, Wappner P (2001) Occurrence of a putative SCF ubiquitin ligase complex in Drosophila. Biochem Biophys Res Commun 286(2):357–364

    Article  PubMed  CAS  Google Scholar 

  32. Brand AH, Manoukian AS, Perrimon N (1994) Ectopic expression in Drosophila. Methods Cell Biol 44:635–654

    Article  PubMed  CAS  Google Scholar 

  33. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415

    PubMed  CAS  Google Scholar 

  34. Estella C, McKay DJ, Mann RS (2008) Molecular integration of wingless, decapentaplegic, and autoregulatory inputs into Distalless during Drosophila leg development. Dev Cell 14(1):86–96

    Article  PubMed  CAS  Google Scholar 

  35. Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M, Gasser B, Kinsey K, Oppel S, Scheiblauer S, Couto A, Marra V, Keleman K, Dickson BJ (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448(7150):151–156

    Article  PubMed  CAS  Google Scholar 

  36. Sandu C, Ryoo HD, Steller H (2010) Drosophila IAP antagonists form multimeric complexes to promote cell death. J Cell Biol 190(6):1039–1052

    Article  PubMed  CAS  Google Scholar 

  37. Heriche JK, Ang D, Bier E, O’Farrell PH (2003) Involvement of an SCFSlmb complex in timely elimination of E2F upon initiation of DNA replication in Drosophila. BMC Genet 4:9

    Article  PubMed  Google Scholar 

  38. Hays R, Wickline L, Cagan R (2002) Morgue mediates apoptosis in the Drosophila melanogaster retina by promoting degradation of DIAP1. Nat Cell Biol 4(6):425–431

    Article  PubMed  CAS  Google Scholar 

  39. Jiang C, Lamblin AF, Steller H, Thummel CS (2000) A steroid-triggered transcriptional hierarchy controls salivary gland cell death during Drosophila metamorphosis. Mol Cell 5(3):445–455

    Article  PubMed  CAS  Google Scholar 

  40. Hughes JR, Meireles AM, Fisher KH, Garcia A, Antrobus PR, Wainman A, Zitzmann N, Deane C, Ohkura H, Wakefield JG (2008) A microtubule interactome: complexes with roles in cell cycle and mitosis. PLoS Biol 6(4):e98

    Article  PubMed  Google Scholar 

  41. Bejarano F, Gonzalez I, Vidal M, Busturia A (2005) The Drosophila RYBP gene functions as a Polycomb-dependent transcriptional repressor. Mech Dev 122(10):1118–1129

    Article  PubMed  CAS  Google Scholar 

  42. Aparicio R, Neyen C, Lemaitre B, Busturia A (2013) dRYBP contributes to the negative regulation of the Drosophila Imd pathway. PLoS ONE 8(4):e62052

    Article  PubMed  CAS  Google Scholar 

  43. Jiang J, Struhl G (1998) Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 391(6666):493–496

    Article  PubMed  CAS  Google Scholar 

  44. Spradling AC, Stern D, Beaton A, Rhem EJ, Laverty T, Mozden N, Misra S, Rubin GM (1999) The Berkeley Drosophila Genome Project gene disruption project: single P-element insertions mutating 25% of vital Drosophila genes. Genetics 153(1):135–177

    PubMed  CAS  Google Scholar 

  45. Murphy TD (2003) Drosophila skpA, a component of SCF ubiquitin ligases, regulates centrosome duplication independently of cyclin E accumulation. J Cell Sci 116(Pt 11):2321–2332

    Article  PubMed  CAS  Google Scholar 

  46. Hay BA, Wolff T, Rubin GM (1994) Expression of baculovirus P35 prevents cell death in Drosophila. Development 120(8):2121–2129

    PubMed  CAS  Google Scholar 

  47. Miletich I, Limbourg-Bouchon B (2000) Drosophila null slimb clones transiently deregulate Hedgehog-independent transcription of wingless in all limb discs, and induce decapentaplegic transcription linked to imaginal disc regeneration. Mech Dev 93(1–2):15–26

    Article  PubMed  CAS  Google Scholar 

  48. Dichtel-Danjoy ML, Ma D, Dourlen P, Chatelain G, Napoletano F, Robin M, Corbet M, Levet C, Hafsi H, Hainaut P, Ryoo HD, Bourdon JC, Mollereau B (2013) Drosophila p53 isoforms differentially regulate apoptosis and apoptosis-induced proliferation. Cell Death Differ 20(1):108–116

    Article  PubMed  CAS  Google Scholar 

  49. Nordstrom W, Chen P, Steller H, Abrams JM (1996) Activation of the reaper gene during ectopic cell killing in Drosophila. Dev Biol 180(1):213–226

    Article  PubMed  CAS  Google Scholar 

  50. Manjon C, Sanchez-Herrero E, Suzanne M (2007) Sharp boundaries of Dpp signalling trigger local cell death required for Drosophila leg morphogenesis. Nat Cell Biol 9(1):57–63

    Article  PubMed  CAS  Google Scholar 

  51. Wichmann A, Jaklevic B, Su TT (2006) Ionizing radiation induces caspase-dependent but Chk2- and p53-independent cell death in Drosophila melanogaster. Proc Natl Acad Sci USA 103(26):9952–9957

    Article  PubMed  CAS  Google Scholar 

  52. Kelly GL, Strasser A (2011) The essential role of evasion from cell death in cancer. Adv Cancer Res 111:39–96

    Article  PubMed  CAS  Google Scholar 

  53. Thompson SJ, Loftus LT, Ashley MD, Meller R (2008) Ubiquitin-proteasome system as a modulator of cell fate. Curr Opin Pharmacol 8(1):90–95

    Article  PubMed  CAS  Google Scholar 

  54. Bader M, Arama E, Steller H (2010) A novel F-box protein is required for caspase activation during cellular remodeling in Drosophila. Development 137(10):1679–1688

    Article  PubMed  CAS  Google Scholar 

  55. Tan M, Gallegos JR, Gu Q, Huang Y, Li J, Jin Y, Lu H, Sun Y (2006) SAG/ROC-SCF beta-TrCP E3 ubiquitin ligase promotes pro-caspase-3 degradation as a mechanism of apoptosis protection. Neoplasia 8(12):1042–1054

    Article  PubMed  CAS  Google Scholar 

  56. Pirity MK, Locker J, Schreiber-Agus N (2005) Rybp/DEDAF is required for early postimplantation and for central nervous system development. Mol Cell Biol 25(16):7193–7202

    Article  PubMed  CAS  Google Scholar 

  57. Stanton SE, McReynolds LJ, Evans T, Schreiber-Agus N (2006) Yaf2 inhibits caspase 8-mediated apoptosis and regulates cell survival during zebrafish embryogenesis. J Biol Chem 281(39):28782–28793

    Article  PubMed  CAS  Google Scholar 

  58. Chen D, Zhang J, Li M, Rayburn ER, Wang H, Zhang R (2009) RYBP stabilizes p53 by modulating MDM2. EMBO Rep 10(2):166–172

    Article  PubMed  CAS  Google Scholar 

  59. Joswig A, Gabriel HD, Kibschull M, Winterhager E (2003) Apoptosis in uterine epithelium and decidua in response to implantation: evidence for two different pathways. Reprod Biol Endocrinol 1:44

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank our colleges Carolina Simoes da Silva and Ricardo Aparicio for fruitful discussions and Keith Harshman for carefully reading the manuscript. We are indebted to Peter C. Verrijzer and members of his laboratory for sharing the mass spectrometry data. We thank the Consolider transgenic Drosophila facility for transgenic flies; the Bloomington Stock Center, the TRiP at Harvard Medical School (NIH/NIGMS R01-GM084947) and the Vienna Drosophila RNAi Center for providing stocks; James Wakefield for the anti-SKPA antibody; Herman Steller for the anti-DIAP1 antibody and the UAS-rpr-HA transgenic flies; Peter C. Verrijzer for embryonic nuclear extracts and Pat H. O’Farrell for the UAS-skpA construct. This work was supported by grants from the Dirección General de Investigación (BFU2008-01154) to A.B, the Consolider Ingenio 2010 Program of the Ministerio de Ciencia e Innovación (CSD 2007-00008) to A.B., by an institutional grant to the Centro de Biología Molecular Severo Ochoa from the Fundación Ramón Areces.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Busturia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4136 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fereres, S., Simón, R. & Busturia, A. A novel dRYBP–SCF complex functions to inhibit apoptosis in Drosophila . Apoptosis 18, 1500–1512 (2013). https://doi.org/10.1007/s10495-013-0897-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0897-4

Keywords

Navigation