Skip to main content
Log in

Drosophila p53 controls Notch expression and balances apoptosis and proliferation

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

A balance between cell proliferation and apoptosis is important for normal development and tissue homeostasis. Under stress conditions, the conserved tumor suppressor and transcription factor Dp53 induces apoptosis to contribute to the maintenance of homeostasis. However, in some cases Dp53-induced apoptosis results in the proliferation of surrounding non-apoptotic cells. To gain insight into the Dp53 function in the control of apoptosis and proliferation, we studied the interaction between the Drosophila Dp53 and Notch genes. We present evidence that simultaneous reduction of Dp53 and Notch function synergistically increases the wing phenotype of Notch heterozygous mutant flies. Further, we found that a Notch cis-regulatory element is responsive to loss and gain of Dp53 function and that over-expression of Dp53 up-regulates Notch mRNA and protein expression. These findings suggest not only that Dp53 and Notch act together to control wing development but also indicate that Dp53 transcriptionally regulates Notch expression. Moreover, using Notch  gain and loss of function mutations we examined the relevance of Dp53 and Notch interactions in the process of Dp53-apoptosis induced proliferation. Results show that proliferation induced by Dp53 over-expression is dependent on Notch, thus identifying Notch as a new player in Dp53-induced proliferation. Interestingly, we found that Dp53-induced Notch activation and proliferation occurs even under conditions where apoptosis was inhibited. Our findings highlight the conservation between flies and vertebrates of the Dp53 and Notch cross-talk and suggest that Dp53 has a dual role regulating cell death and proliferation gene networks to control the homeostatic balance between apoptosis and proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253(5015):49–53

    Article  PubMed  CAS  Google Scholar 

  2. El-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B (1992) Definition of a consensus binding site for p53. Nat Genet 1(1):45–49

    Article  PubMed  CAS  Google Scholar 

  3. Funk WD, Pak DT, Karas RH, Wright WE, Shay JW (1992) A transcriptionally active DNA-binding site for human p53 protein complexes. Mol Cell Biol 12(6):2866–2871

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387(6630):296–299

    Article  PubMed  CAS  Google Scholar 

  5. Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387(6630):299–303

    Article  PubMed  CAS  Google Scholar 

  6. Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9(5):402–412

    Article  PubMed  CAS  Google Scholar 

  7. Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8(4):275–283

    Article  PubMed  CAS  Google Scholar 

  8. Gonzalez C (2013) Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer 13(3):172–183

    Article  PubMed  CAS  Google Scholar 

  9. Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147(4):742–758

    Article  PubMed  CAS  Google Scholar 

  10. Wing JP, Schwartz LM, Nambu JR (2001) The RHG motifs of Drosophila Reaper and Grim are important for their distinct cell death-inducing abilities. Mech Dev 102(1–2):193–203

    Article  PubMed  CAS  Google Scholar 

  11. Ollmann M, Young LM, Di Como CJ, Karim F, Belvin M, Robertson S, Whittaker K, Demsky M, Fisher WW, Buchman A, Duyk G, Friedman L, Prives C, Kopczynski C (2000) Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell 101(1):91–101

    Article  PubMed  CAS  Google Scholar 

  12. Jin S, Martinek S, Joo WS, Wortman JR, Mirkovic N, Sali A, Yandell MD, Pavletich NP, Young MW, Levine AJ (2000) Identification and characterization of a p53 homologue in Drosophila melanogaster. Proc Natl Acad Sci USA 97(13):7301–7306

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Marcel V, Dichtel-Danjoy ML, Sagne C, Hafsi H, Ma D, Ortiz-Cuaran S, Olivier M, Hall J, Mollereau B, Hainaut P, Bourdon JC (2011) Biological functions of p53 isoforms through evolution: lessons from animal and cellular models. Cell Death Differ 18(12):1815–1824

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Dichtel-Danjoy ML, Ma D, Dourlen P, Chatelain G, Napoletano F, Robin M, Corbet M, Levet C, Hafsi H, Hainaut P, Ryoo HD, Bourdon JC, Mollereau B (2013) Drosophila p53 isoforms differentially regulate apoptosis and apoptosis-induced proliferation. Cell Death Differ 20(1):108–116. doi:10.1038/cdd.2012.100

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Sogame N, Kim M, Abrams JM (2003) Drosophila p53 preserves genomic stability by regulating cell death. Proc Natl Acad Sci USA 100(8):4696–4701

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Brodsky MH, Nordstrom W, Tsang G, Kwan E, Rubin GM, Abrams JM (2000) Drosophila p53 binds a damage response element at the reaper locus. Cell 101(1):103–113

    Article  PubMed  CAS  Google Scholar 

  17. Ryoo HD, Gorenc T, Steller H (2004) Apoptotic cells can induce compensatory cell proliferation through the JNK and the Wingless signaling pathways. Dev Cell 7(4):491–501

    Article  PubMed  CAS  Google Scholar 

  18. Brodsky MH, Weinert BT, Tsang G, Rong YS, McGinnis NM, Golic KG, Rio DC, Rubin GM (2004) Drosophila melanogaster MNK/Chk2 and p53 regulate multiple DNA repair and apoptotic pathways following DNA damage. Mol Cell Biol 24(3):1219–1231

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Mandal S, Freije WA, Guptan P, Banerjee U (2010) Metabolic control of G1-S transition: cyclin E degradation by p53-induced activation of the ubiquitin-proteasome system. J Cell Biol 188(4):473–479

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Biteau B, Jasper H (2009) It’s all about balance: p53 and aging. Aging (Albany NY) 1(11):884–886

    Google Scholar 

  21. Wells BS, Johnston LA (2012) Maintenance of imaginal disc plasticity and regenerative potential in Drosophila by p53. Dev Biol 361(2):263–276

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Mollereau B, Perez-Garijo A, Bergmann A, Miura M, Gerlitz O, Ryoo HD, Steller H, Morata G (2012) Compensatory proliferation and apoptosis-induced proliferation: a need for clarification. Cell Death Differ 20(1):181

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ryoo HD, Bergmann A (2012) The role of apoptosis-induced proliferation for regeneration and cancer. Cold Spring Harb Perspect Biol 4(8):a008797

    Article  PubMed  PubMed Central  Google Scholar 

  24. Perez-Garijo A, Shlevkov E, Morata G (2009) The role of Dpp and Wg in compensatory proliferation and in the formation of hyperplastic overgrowths caused by apoptotic cells in the Drosophila wing disc. Development 136(7):1169–1177

    Article  PubMed  CAS  Google Scholar 

  25. Chera S, Ghila L, Dobretz K, Wenger Y, Bauer C, Buzgariu W, Martinou JC, Galliot B (2009) Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration. Dev Cell 17(2):279–289

    Article  PubMed  CAS  Google Scholar 

  26. Fan Y, Bergmann A (2008) Distinct mechanisms of apoptosis-induced compensatory proliferation in proliferating and differentiating tissues in the Drosophila eye. Dev Cell 14(3):399–410

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Huang Q, Li F, Liu X, Li W, Shi W, Liu FF, O’Sullivan B, He Z, Peng Y, Tan AC, Zhou L, Shen J, Han G, Wang XJ, Thorburn J, Thorburn A, Jimeno A, Raben D, Bedford JS, Li CY (2011) Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med 17(7):860–866

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7(9):678–689

    Article  PubMed  CAS  Google Scholar 

  29. Ranganathan P, Weaver KL, Capobianco AJ (2011) Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer 11(5):338–351

    Article  PubMed  CAS  Google Scholar 

  30. Mohr OL (1919) Character changes caused by mutation of an entire region of a chromosome in Drosophila. Genetics 4(3):275–282

    PubMed  CAS  PubMed Central  Google Scholar 

  31. Herranz H, Milan M (2008) Signalling molecules, growth regulators and cell cycle control in Drosophila. Cell Cycle 7(21):3335–3337

    Article  PubMed  CAS  Google Scholar 

  32. Go MJ, Eastman DS, Artavanis-Tsakonas S (1998) Cell proliferation control by Notch signaling in Drosophila development. Development 125(11):2031–2040

    PubMed  CAS  Google Scholar 

  33. Baonza A, Garcia-Bellido A (2000) Notch signaling directly controls cell proliferation in the Drosophila wing disc. Proc Natl Acad Sci USA 97(6):2609–2614

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Guruharsha KG, Kankel MW, Artavanis-Tsakonas S (2012) The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet 13(9):654–666. doi:10.1038/nrg3272

    Article  PubMed  CAS  Google Scholar 

  35. Alimirah F, Panchanathan R, Davis FJ, Chen J, Choubey D (2007) Restoration of p53 expression in human cancer cell lines upregulates the expression of Notch1: implications for cancer cell fate determination after genotoxic stress. Neoplasia 9(5):427–434

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Yugawa T, Handa K, Narisawa-Saito M, Ohno S, Fujita M, Kiyono T (2007) Regulation of Notch1 gene expression by p53 in epithelial cells. Mol Cell Biol 27(10):3732–3742

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Ungerback J, Elander N, Grunberg J, Sigvardsson M, Soderkvist P (2011) The Notch-2 gene is regulated by Wnt signaling in cultured colorectal cancer cells. PLoS One 6(3):e17957

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wu J, Iwata F, Grass JA, Osborne CS, Elnitski L, Fraser P, Ohneda O, Yamamoto M, Bresnick EH (2005) Molecular determinants of NOTCH4 transcription in vascular endothelium. Mol Cell Biol 25(4):1458–1474

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415

    PubMed  CAS  Google Scholar 

  40. Hay BA, Wassarman DA, Rubin GM (1995) Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 83(7):1253–1262

    Article  PubMed  CAS  Google Scholar 

  41. Bourdon JC, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP, Saville MK, Lane DP (2005) p53 isoforms can regulate p53 transcriptional activity. Genes Dev 19(18):2122–2137

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Cohen B, McGuffin ME, Pfeifle C, Segal D, Cohen SM (1992) Apterous, a gene required for imaginal disc development in Drosophila encodes a member of the LIM family of developmental regulatory proteins. Genes Dev 6(5):715–729

    Article  PubMed  CAS  Google Scholar 

  43. Housden BE, Millen K, Bray SJ (2012) Drosophila reporter vectors compatible with PhiC31 integrase transgenesis techniques and their use to generate new notch reporter fly lines. G3 (Bethesda) 2(1):79–82

    Article  CAS  Google Scholar 

  44. Gonzalez I, Busturia A (2009) High levels of dRYBP induce apoptosis in Drosophila imaginal cells through the activation of reaper and the requirement of trithorax, dredd and dFADD. Cell Res 19(6):747–757

    Article  PubMed  CAS  Google Scholar 

  45. Aparicio R, Neyen C, Lemaitre B, Busturia A (2013) dRYBP contributes to the negative regulation of the Drosophila Imd pathway. PLoS One 8(4):e62052

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Classen AK, Bunker BD, Harvey KF, Vaccari T, Bilder D (2009) A tumor suppressor activity of Drosophila Polycomb genes mediated by JAK-STAT signaling. Nat Genet 41(10):1150–1155

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Gonzalez I, Aparicio R, Busturia A (2008) Functional characterization of the dRYBP gene in Drosophila. Genetics 179(3):1373–1388

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Ryoo HD, Bergmann A, Gonen H, Ciechanover A, Steller H (2002) Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1. Nat Cell Biol 4(6):432–438

    Article  PubMed  CAS  Google Scholar 

  49. Lee JH, Lee E, Park J, Kim E, Kim J, Chung J (2003) In vivo p53 function is indispensable for DNA damage-induced apoptotic signaling in Drosophila. FEBS Lett 550(1–3):5–10

    Article  PubMed  CAS  Google Scholar 

  50. Blochlinger K, Bodmer R, Jack J, Jan LY, Jan YN (1988) Primary structure and expression of a product from cut, a locus involved in specifying sensory organ identity in Drosophila. Nature 333(6174):629–635

    Article  PubMed  CAS  Google Scholar 

  51. Micchelli CA, Rulifson EJ, Blair SS (1997) The function and regulation of cut expression on the wing margin of Drosophila: Notch, Wingless and a dominant negative role for Delta and Serrate. Development 124(8):1485–1495

    PubMed  CAS  Google Scholar 

  52. Mesquita D, Dekanty A, Milan M (2010) A dp53-dependent mechanism involved in coordinating tissue growth in Drosophila. PLoS Biol 8(12):e1000566

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Johansen KM, Fehon RG, Artavanis-Tsakonas S (1989) The notch gene product is a glycoprotein expressed on the cell surface of both epidermal and neuronal precursor cells during Drosophila development. J Cell Biol 109(5):2427–2440

    Article  PubMed  CAS  Google Scholar 

  54. Giraldez AJ, Cohen SM (2003) Wingless and Notch signaling provide cell survival cues and control cell proliferation during wing development. Development 130(26):6533–6543

    Article  PubMed  CAS  Google Scholar 

  55. Neumann CJ, Cohen SM (1996) A hierarchy of cross-regulation involving Notch, wingless, vestigial and cut organizes the dorsal/ventral axis of the Drosophila wing. Development 122(11):3477–3485

    PubMed  CAS  Google Scholar 

  56. Rafel N, Milan M (2008) Notch signalling coordinates tissue growth and wing fate specification in Drosophila. Development 135(24):3995–4001

    Article  PubMed  CAS  Google Scholar 

  57. Beckerman R, Prives C (2010) Transcriptional regulation by p53. Cold Spring Harb Perspect Biol 2(8):a000935

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lozano G (2010) Mouse models of p53 functions. Cold Spring Harb Perspect Biol 2(4):a001115

    Article  PubMed  PubMed Central  Google Scholar 

  59. Green DR, Kroemer G (2009) Cytoplasmic functions of the tumour suppressor p53. Nature 458(7242):1127–1130

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Espinosa JM, Verdun RE, Emerson BM (2003) p53 functions through stress- and promoter-specific recruitment of transcription initiation components before and after DNA damage. Mol Cell 12(4):1015–1027

    Article  PubMed  CAS  Google Scholar 

  61. Shaked H, Shiff I, Kott-Gutkowski M, Siegfried Z, Haupt Y, Simon I (2008) Chromatin immunoprecipitation-on-chip reveals stress-dependent p53 occupancy in primary normal cells but not in established cell lines. Cancer Res 68(23):9671–9677

    Article  PubMed  CAS  Google Scholar 

  62. Lefort K, Mandinova A, Ostano P, Kolev V, Calpini V, Kolfschoten I, Devgan V, Lieb J, Raffoul W, Hohl D, Neel V, Garlick J, Chiorino G, Dotto GP (2007) Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases. Genes Dev 21(5):562–577

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Dotto GP (2009) Crosstalk of Notch with p53 and p63 in cancer growth control. Nat Rev Cancer 9(8):587–595

    Article  PubMed  CAS  Google Scholar 

  64. Perez-Garijo A, Martin FA, Morata G (2004) Caspase inhibition during apoptosis causes abnormal signalling and developmental aberrations in Drosophila. Development 131(22):5591–5598

    Article  PubMed  CAS  Google Scholar 

  65. Kondo S, Senoo-Matsuda N, Hiromi Y, Miura M (2006) DRONC coordinates cell death and compensatory proliferation. Mol Cell Biol 26(19):7258–7268

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank our colleagues Sol Fereres and Carolina Simoes da Silva for fruitful discussions and Keith Harshman for carefully reading the manuscript. We thank the Consolider Drosophila facility, the Bloomington Stock Center, the TRiP at Harvard Medical School (NIH/NIGMS R01-GM084947) and the Vienna Drosophila RNAi Center for providing stocks. We also thank the Developmental Hybridoma Bank, University of Iowa, for providing antibodies and Herman Steller for the anti-DIAP1 antibody. This work was supported by grants from the Dirección General de Investigación (BFU2008-01154) to A.B, the Consolider Ingenio 2010 Program of the Ministerio de Ciencia e Innovación (CSD 2007-00008) to A.B., and by an institutional grant to the Centro de Biología Molecular Severo Ochoa from the Fundación Ramón Areces, and by an MRC programme grant to S.J.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Busturia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4665 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simón, R., Aparicio, R., Housden, B.E. et al. Drosophila p53 controls Notch expression and balances apoptosis and proliferation. Apoptosis 19, 1430–1443 (2014). https://doi.org/10.1007/s10495-014-1000-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-1000-5

Keywords

Navigation