Skip to main content
Log in

A putative link between phagocytosis-induced apoptosis and hemocyanin-derived phenoloxidase activation

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apoptosis and phagocytosis are crucial processes required for developmental morphogenesis, pathogen deterrence and immunomodulation in metazoans. We present data showing that amebocytes of the chelicerate, Limulus polyphemus, undergo phagocytosis-induced cell death after ingesting spores of the fungus, Beauveria bassiana, in vitro. The observed biochemical and morphological modifications associated with dying amebocytes are congruent with the hallmarks of apoptosis, including: extracellularisation of phosphatidylserine, intranucleosomal DNA fragmentation and an increase in caspase 3/7-like activities. Previous studies have demonstrated that phosphatidylserine is a putative endogenous activator of hemocyanin-derived phenoloxidase, inducing conformational changes that permit phenolic substrate access to the active site. Here, we observed extracellular hemocyanin-derived phenoloxidase activity levels increase in the presence of apoptotic amebocytes. Enzyme activity induced by phosphatidylserine or apoptotic amebocytes was reduced completely upon incubation with the phosphatidylserine binding protein, annexin V. We propose that phosphatidylserine redistributed to the outer plasma membrane of amebocytes undergoing phagocytosis-induced apoptosis could interact with hemocyanin, thus facilitating its conversion into a phenoloxidase-like enzyme, during immune challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. All buffers marked were purchased prepared from their respective manufacturers.

References

  1. Brinkmann V, Reichard U, Goosmann C et al (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535

    Article  PubMed  CAS  Google Scholar 

  2. Wang XW, Tan NS, Ho B, Ding JL et al (2006) Evidence for the ancient origin of the NF-kappaB/IkappaB cascade: its archaic role in pathogen infection and immunity. Proc Natl Acad Sci USA 103:4204–4209

    Article  PubMed  CAS  Google Scholar 

  3. Kroemer G, Galluzzi L, Vandenabeele P et al (2009) Classification of cell death: recommendations of the nomenclature committee on cell death 2009. Cell Death Differ 16:3–11

    Article  PubMed  CAS  Google Scholar 

  4. Brown GC, Neher JJ (2012) Eaten alive! Cell death by primary phagocytosis: ‘phagoptosis’. Trends Biochem Sci 37:325–332

    Article  PubMed  CAS  Google Scholar 

  5. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  PubMed  CAS  Google Scholar 

  6. Cooper DM, Mitchell-Foster K (2011) Death for survival: What do we know about innate immunity and cell death in insects? ISJ 8:162–172

    Google Scholar 

  7. Menze MA, Fortner G, Nag S, Hand SC et al (2010) Mechanisms of apoptosis in crustacea: What conditions induce versus suppress cell death? Apoptosis 15:293–312

    Article  PubMed  CAS  Google Scholar 

  8. Kiss T (2010) Apoptosis and its functional significance in molluscs. Apoptosis 15:313–321

    Article  PubMed  Google Scholar 

  9. DeLeo FR (2004) Modulation of phagocyte apoptosis by bacterial pathogens. Apoptosis 9:399–413

    Article  PubMed  CAS  Google Scholar 

  10. Thi EP, Lambertz U, Reiner NE (2012) Sleeping with the enemy: how intracellular pathogens cope with macrophage lifestyle. PLoS Pathog 8:e1002551

    Article  PubMed  CAS  Google Scholar 

  11. Frankenberg T, Kirschnek S, Hacker H, Hacker G (2008) Phagocytosis-induced apoptosis of macrophages is linked to uptake, killing and degradation of bacteria. Eur J Immunol 38:204–215

    Article  PubMed  CAS  Google Scholar 

  12. Kirschnek S, Ying S, Fischer SF et al (2005) Phagocytosis-induced apoptosis is mediated by up-regulation and activation of the Bcl-2 homology domain 3-only protein Bim. J Immunol 174:671–679

    PubMed  CAS  Google Scholar 

  13. Kennedy AD, DeLeo FR (2009) Neutrophil apoptosis and the resolution of infection. Immunol Res 43:25–61

    Article  PubMed  Google Scholar 

  14. Decker H, Jaenicke E (2004) Recent findings on phenoloxidase activity and antimicrobial activity of hemocyanins. Devel Comp Immunol 28:673–687

    Article  CAS  Google Scholar 

  15. Jiang N, Tan NS, Ho B, Ding JL (2007) Respiratory protein generated reactive oxygen species as an antimicrobial strategy. Nature Immunol 8:1114–1122

    Article  CAS  Google Scholar 

  16. Zhang Y, Yan F, Hu Z, Zhao X et al (2009) Hemocyanin from shrimp Litopenaeus vannamei shows hemolytic activity. Fish Shellfish Immunol 27:33–335

    Article  CAS  Google Scholar 

  17. Coates CJ, Kelly SM, Nairn J (2011) Possible role of phosphatidylserine-hemocyanin interaction in the innate immune response of Limulus polyphemus. Dev Comp Immunol 35:155–163

    Article  PubMed  CAS  Google Scholar 

  18. Zhao X, Guo L, Zhang Y, Liu Y et al (2012) SNPs of hemocyanin C-terminal fragment in shrimp Litopenaeus vannamei. FEBS Lett 586:403–410

    Article  PubMed  CAS  Google Scholar 

  19. Coates CJ, Whalley T, Nairn J (2012) Phagocytic activity of Limulus polyphemus amebocytes in vitro. J Invert Pathol 111:205–210

    Article  CAS  Google Scholar 

  20. Altman SA, Randers L, Rao G (1993) Comparison of trypan blue dye exclusion and fluorometric assays for mammalian cell viability determinants. Biotech Prog 9:671–674

    Article  CAS  Google Scholar 

  21. Logue SE, Elgendy M, Martin SJ (2009) Expression, purification and use of recombinant annexin V for the detection of apoptotic cells. Nat Protoc 4:1383–1395

    Article  PubMed  CAS  Google Scholar 

  22. Evans TC Jr, Nelsestuen GL (1994) Calcium and membrane-binding of monomeric and multimeric annexin II. Biochemistry 33:13231–13238

    Article  PubMed  CAS  Google Scholar 

  23. Ding JL, Thangamani S, Kusuma N, Seow WK et al (2005) Spatial and temporal coordination of expression of immune genes during Pseudomonas infection of horseshoe crab, Carcinoscorpius rotundicauda. Genes Immun 6:557–574

    Article  PubMed  CAS  Google Scholar 

  24. Coates CJ, Bradford EL, Krome CA, Nairn J (2012) Effect of temperature on biochemical and cellular properties of Limulus polyphemus. Aquaculture 334–337:30–38

    Article  Google Scholar 

  25. Armstrong PB (1980) Adhesion and spreading of Limulus blood cells on artificial surfaces. J Cell Sci 44:243–262

    PubMed  CAS  Google Scholar 

  26. Conrad ML, Pardy RL, Wainwright N, Child A, Armstrong PB (2006) Response of the blood clotting system of the American horseshoe crab, Limulus polyphemus, to a novel form of lipopolysaccharide from a green alga. Comp Biochem Physiol Part A 144:423–428

    Article  Google Scholar 

  27. Li H, Zhu H, Xu C-J, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    Article  PubMed  CAS  Google Scholar 

  28. Marchetti P, Castedo M, Susin SA, Zamzami N et al (1996) Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med 184:1155–1160

    Article  PubMed  CAS  Google Scholar 

  29. Jagasia R, Grote P, Westermann B, Condradt B (2005) DRP-1-mediated mitochondrial fragmentation during EGL-1-induced cell death in C. elegans. Nature 433:754–760

    Article  PubMed  CAS  Google Scholar 

  30. Henry CM, Hollville E, Martine SJ (2013) Measuring apoptosis by microscopy and flow cytometry. Methods 61:90–97

    Article  PubMed  CAS  Google Scholar 

  31. Green DR, Oberst A, Dillon CP, Weinlich R, Salvesen GS (2011) RIPK-dependent necrosis and its regulation by caspases: a mystery in five acts. Mol Cell 44:9–16

    Article  PubMed  CAS  Google Scholar 

  32. Baird S, Kelly SM, Price NC, Jaenicke E et al (2007) Hemocyanin conformational changes associated with SDS-induced phenol oxidase activation. Biochim Biophys Acta 1774:1380–1394

    Article  PubMed  CAS  Google Scholar 

  33. Watson RW, Redmond HP, Wang JH, Condron C, Bouchier-Hayes D (1996) Neutrophils undergo apoptosis following ingestion of Escherichia coli. J Immunol 156:3986–3992

    PubMed  CAS  Google Scholar 

  34. Colamussi ML, White MR, Crouch E, Hartshorn KL (1999) Influenza A virus accelerates apoptosis and markedly potentiates apoptotic effects of bacteria. Blood 93:2395–2403

    PubMed  CAS  Google Scholar 

  35. Rotstein D, Parodo J, Taneja R, Marshall JC (2000) Phagocytosis of Candida albicans induces apoptosis of human neutrophils. SHOCK 14:278–283

    Article  PubMed  CAS  Google Scholar 

  36. Zhang B, Hirahashi J, Cullere X, Mayadas TN (2003) Elucidation of the molecular events leading to neutrophil apoptosis following phagocytosis. J Biol Chem 278:28443–28454

    Article  PubMed  CAS  Google Scholar 

  37. Krzyzowska M, Schollenberger A, Skierski J, Niemialtowski M (2002) Apoptosis during ectromelia orthopoxvirus infection is DEVDase dependent: in vitro and in vivo studies. Microb Infect 4:599–611

    Article  CAS  Google Scholar 

  38. Phongdara A, Wanna W, Chotigeat W (2006) Molecular cloning and expression of caspase from white shrimp Penaeus merguiensis. Aquaculture 252:114–120

    Article  CAS  Google Scholar 

  39. Song Z, McCall K, Steller H (1997) DCP-1, a Drosophila cell death protease essential for development. Science 275:536–540

    Article  PubMed  CAS  Google Scholar 

  40. Albee L, Shi B, Perlman H (2007) Aspartic protease and caspase 3/7 activation are central to macrophage apoptosis following infection with Escherichia coli. J Leuk Biol 81:229–237

    Article  CAS  Google Scholar 

  41. Gille Ch, Leiber A, Mundle I, Spring B et al (2009) Phagocytosis and postphagocytic reaction of cord blood and adult blood monocyte after infection with green fluorescent protein-labelled Escherichia coli and group B Streptococci. Cytom Part B 76B:271–284

    Article  CAS  Google Scholar 

  42. Dreschers S, Gille C, Haas M, Grosse-Ophoff J et al (2013) Infection-induced bystander apoptosis of monocytes is TNF-alpha-mediated. PLoS ONE 8:e53589

    Article  PubMed  CAS  Google Scholar 

  43. Smith VJ (2010) Immunology of invertebrates: cellular. Encyclopedia of life sciences (ELS). Wiley, Chicester. doi:10.1002/9780470015902.a0002344.pub2

    Google Scholar 

  44. Franc NC (2002) Phagocytosis of apoptotic cells in mammals, Caenorhabditis elegans and Drosophila melanogaster: molecular mechanisms and physiological consequences. Front Biosci 7:1298–1313

    Article  Google Scholar 

  45. Hillman MR (2004) Strategies and mechanisms for host and pathogen survival in acute and persistent viral infections. Proc Nat Acad Sci, USA 101:14560–14566

    Article  Google Scholar 

  46. McLean JE, Ruck A, Shirazian S, Pooyaei-Mehr F, Zakeri ZF (2008) Viral manipulation of cell death. Cur Pharm Des 14:198–220

    Article  CAS  Google Scholar 

  47. Watthanasurorot A, Jiravanichpaisal P, Soderhall K, Soderhall I (2013) A calreticulin/gC1qR complex prevents cells from dying: a conserved mechanism from arthropods to humans. J Mol Cell Biol 5:120–131

    Article  PubMed  CAS  Google Scholar 

  48. Hsu J-P, Huang C, Liao C-M, Hsuan S-L, Hung H–H, Chien M-S (2005) Engulfed pathogen-induced apoptosis in haemocytes of giant freshwater prawn, Macrobrachium rosenbergii. J Fish Dis 28:729–735

    Article  PubMed  Google Scholar 

  49. Lavrov DV, Boore JL, Brown WM (2000) The complete mitochondrial DNA sequence of the horseshoe crab Limulus polyphemus. Mol Biol Evol 17:813–824

    Article  PubMed  CAS  Google Scholar 

  50. Wu Y, Tibrewal N, Birge RB (2006) Phosphatidylserine recognition by phagocytes: a view to a kill. Trends Cell Biol 16:189–197

    Article  PubMed  CAS  Google Scholar 

  51. Clark MR (2011) Flippin’ lipids. Nat Immunol 12:373–375

    Article  PubMed  CAS  Google Scholar 

  52. Lee SH, Meng XW, Flatten KS, Loegering DA, Kaufmann SH (2013) Phosphatidylserine exposure during apoptosis reflects bidirectional trafficking between plasma membrane and cytoplasm. Cell Death Differ 20:64–76

    Article  PubMed  CAS  Google Scholar 

  53. Levin J, Bang FB (1968) Clottable protein in Limulus: its localization and kinetics of its coagulation by endotoxin. Thrombosis et Diathesis Haemorrhagica 19:186–197

    PubMed  CAS  Google Scholar 

  54. Nagai T, Kawabata S (2000) A link between blood coagulation and prophenoloxidase activation in the arthropod host defence. J Biol Chem 275:29264–29267

    Article  PubMed  CAS  Google Scholar 

  55. Nellaiappan K, Sugumaran M (1996) On the presence of prophenoloxidase in the hemolymph of the horseshoe crab, Limulus. Comp Biochem Phys Part B 113:163–168

    Article  CAS  Google Scholar 

  56. Nagai T, Osaki T, Kawabata S (2001) Functional conversion of hemocyanin to phenoloxidase by horseshoe crab antimicrobial peptides. J Biol Chem 276:27166–27170

    Article  PubMed  CAS  Google Scholar 

  57. Meers P, Mealy T (1993) Calcium-dependent annexin V binding to phospholipids: stoichiometry, specificity, and the role of negative charge. Biochemistry 32:11711–11721

    Article  PubMed  CAS  Google Scholar 

  58. Pigault C, Follenius-Wund A, Schmutz M, Freyssinet J-M, Brisson A (1994) Formation of two-dimensional arrays of annexin V on phosphatidylserine-containing liposomes. J Mol Biol 236:199–208

    Article  PubMed  CAS  Google Scholar 

  59. Wright J, McCaskill-Clark W, Cain JA, Patterson A, Coates CJ, Nairn J (2012) Effects of known phenoloxidase inhibitors on hemocyanin-derived phenoloxidase from Limulus polyphemus. Comp Biochem Physiol Part B 163:303–308

    Article  CAS  Google Scholar 

  60. Martin CJ, Booty MG, Rosebrock TR (2012) Efferocytosis is an innate antibacterial mechanism. Cell Host Microbe 12:289–300

    Article  PubMed  CAS  Google Scholar 

  61. Zwaal RFA, Comfurius P, Bevers EM (1998) Lipid-protein interactions in blood coagulation. Biochim Biophys Acta 1376:433–453

    Article  PubMed  CAS  Google Scholar 

  62. Stace CL, Ktistakis NT (2006) Phosphatidic acid-and phosphatidylserine-binding proteins. Biochim Biophys Acta 1761:913–926

    Article  PubMed  CAS  Google Scholar 

  63. Nakamura T, Tokunaga F, Morita T et al (1988) Intracellular serine-protease zymogen, factor C, from horseshoe crab hemocytes. Eur J Biochem 176:89–94

    Article  PubMed  CAS  Google Scholar 

  64. Bidla A, Hauling T, Dushay MS, Theopold U (2009) Activation of insect phenoloxidase after injury: endogenous versus foreign elicitors. J Innat Immun 1:301–308

    Article  CAS  Google Scholar 

  65. Vance JE, Steenbergen R (2005) Metabolism and functions of phosphatidylserine. Prog Lipid Res 44:207–234

    Article  PubMed  CAS  Google Scholar 

  66. Zaini NAM, Osman A, Hamid AA, Ebrahimpour A, Saari N (2013) Purification and characterisation of membrane-bound Polyphenoloxidase (mPPO) from snake fruit [Salacca zalacca (Gaertn.) Voss]. Food Chem 136:407–414

    Article  PubMed  CAS  Google Scholar 

  67. Sokolova IM (2009) Apoptosis in molluscan immune defense. ISJ 6:49–58

    Google Scholar 

  68. Bidla A, Dushay MS, Theopold U (2007) Crystal rupture after injury in Drosophila requires JNK pathway, small GTPases and the TNF homolog Eiger. J Cell Sci 120:1209–1215

    Article  PubMed  CAS  Google Scholar 

  69. Jiravanichpaisal P, Lee BL, Soderhall K (2006) Cell-mediated immunity in arthropods: Hemoatopoiesis, coagulation, melanisation and opsonisation. Immunbiol 211:213–236

    Article  CAS  Google Scholar 

  70. Kawabata S, Koshiba T, Shibata T (2009) The lipopolysaccharide-activated innate immune response network of the horseshoe crab. ISJ 6:59–77

    Google Scholar 

  71. MacPherson JC, Pavlovich JG, Jacobs RS (1998) Phospholipid composition of the granular amebocyte from the horseshoe crab, Limulus polyphemus. Lipids 33:931–940

    Article  PubMed  CAS  Google Scholar 

  72. Armstrong P, Levin J (1979) In vitro phagocytosis by Limulus blood cells. J Invert Pathol 34:145–151

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Stirling. With thanks to Alex Mühlhölzl, C.T.O., Marine Biotech Limited, for providing access to L. polyphemus. We are grateful to Prof. Seamus J. Martin and Conor M. Henry (Molecular Cell Biology Laboratory, Trinity College Dublin) for kindly providing the pProEx.Htb.annexin V plasmid.

Conflict of interest

The authors declare no financial or other potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher J. Coates or Jacqueline Nairn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coates, C.J., Whalley, T., Wyman, M. et al. A putative link between phagocytosis-induced apoptosis and hemocyanin-derived phenoloxidase activation. Apoptosis 18, 1319–1331 (2013). https://doi.org/10.1007/s10495-013-0891-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0891-x

Keywords

Navigation