Skip to main content
Log in

Inhibition of polyamine oxidase prevented cyclin-dependent kinase inhibitor-induced apoptosis in HCT 116 colon carcinoma cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Roscovitine and purvalanol are novel cyclin-dependent kinase (CDK) inhibitors that prevent cell proliferation and induce apoptotic cell death in various cancer cell lines. Although a number of studies have demonstrated the potential apoptotic role of roscovitine, there is limited data about the therapeutic efficiency of purvalanol on cancer cells. The natural polyamines (PAs) putrescine, spermidine, and spermine have essential roles in the regulation of cell differentiation, growth, and proliferation, and increased levels of these compounds have been associated with cancer progression. Recently, depletion of intracellular PA levels because of modulation of PA catabolic enzymes was shown to be an indicator of the efficacy of chemotherapeutic agents. In this study, our aim was to investigate the potential role of PA catabolic enzymes in CDK inhibitor-induced apoptosis in HCT 116 colon carcinoma cells. Exposure of cells to roscovitine or purvalanol decreased cell viability in a dose- and time-dependent manner. The selected concentrations of roscovitine and purvalanol inhibited cell viability by 50 % compared with control cells and induced apoptosis by activating the mitochondria-mediated pathway in a caspase-dependent manner. However, the apoptotic effect of purvalanol was stronger than that of roscovitine in HCT 116 cells. In addition, we found that CDK inhibitors decreased PA levels and significantly upregulated expression of key PA catabolic enzymes such as polyamine oxidase (PAO) and spermine oxidase (SMO). MDL-72,527, a specific inhibitor of PAO and SMO, decreased apoptotic potential of CDK inhibitors on HCT 116 cells. Moreover, transient silencing of PAO was also reduced prevented CDK inhibitor-induced apoptosis in HCT 116 cells. We conclude that the PA catabolic pathway, especially PAO, is a critical target for understanding the molecular mechanism of CDK inhibitor-induced apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Duranton B, Holl V, Schneider Y et al (2002) Cytotoxic effects of the polyamine oxidase inactivator MDL 72527 to two human colon carcinoma cell lines SW480 and SW620. Cell Biol Toxicol 18:381–396

    Article  PubMed  CAS  Google Scholar 

  2. Benassi MS, Molendini L, Gamberi G et al (1999) Alteration of pRb/p16/cdk4 regulation in human osteosarcoma. Int J Cancer 84:489–493

    Article  PubMed  CAS  Google Scholar 

  3. King KL, Cidlowski JA (1995) Cell cycle and apoptosis: common pathways to life and death. J Cell Biochem 58:175–180

    Article  PubMed  CAS  Google Scholar 

  4. McClue SJ, Blake D, Clarke R et al (2002) In vitro and in vivo antitumor properties of the cyclin dependent kinase inhibitor CYC202 (R-roscovitine). Int J Cancer 102:463–468

    Article  PubMed  CAS  Google Scholar 

  5. Meijer L, Borgne A, Mulner O et al (1997) Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 243:527–536

    Article  PubMed  CAS  Google Scholar 

  6. Mohapatra S, Chu B, Zhao X, Djeu J, Cheng JQ, Pledger WJ (2009) Apoptosis of metastatic prostate cancer cells by a combination of cyclin-dependent kinase and AKT inhibitors. Int J Biochem Cell Biol 41:595–602

    Article  PubMed  CAS  Google Scholar 

  7. Wesierska-Gadek J, Gritsch D, Zulehner N, Komina O, Maurer M (2011) Roscovitine, a selective CDK inhibitor, reduces the basal and estrogen-induced phosphorylation of ER-α in human ER-positive breast cancer cells. J Cell Biochem 112:761–772

    Article  PubMed  CAS  Google Scholar 

  8. Zhang T, Jiang T, Zhang F et al (2010) Involvement of p21Waf1/Cip1 cleavage during roscovitine-induced apoptosis in non-small cell lung cancer cells. Oncol Rep 23:239–245

    Article  PubMed  CAS  Google Scholar 

  9. Raje N, Kumar S, Hideshima T et al (2005) Seliciclib (CYC202 or R-roscovitine), a small-molecule cyclin-dependent kinase inhibitor, mediates activity via down-regulation of Mcl-1 in multiple myeloma. Blood 106:1042–1047

    Article  PubMed  CAS  Google Scholar 

  10. Arisan ED, Coker A, Palavan-Unsal N (2012) Polyamine depletion enhances the roscovitine-induced apoptosis through the activation of mitochondria in HCT116 colon carcinoma cells. Amino Acids 42:655–665

    Article  PubMed  CAS  Google Scholar 

  11. Pegg AE, McCann PP (1982) Polyamine metabolism and function. Am J Physiol 243:C212–C221

    PubMed  CAS  Google Scholar 

  12. Heby O, Persson L (1990) Molecular genetics of polyamine synthesis in eukaryotic cells. Trends Biochem Sci 15:153–158

    Article  PubMed  CAS  Google Scholar 

  13. Heby O, Andersson G, Gray JW (1978) Interference with S and G2 phase progression by polyamine synthesis inhibitors. Exp Cell Res 111:461–464

    Article  PubMed  CAS  Google Scholar 

  14. Andersson G, Heby O (1977) Kinetics of cell proliferation and polyamine synthesis during Ehrlich ascites tumor growth. Cancer Res 37:4361–4366

    PubMed  CAS  Google Scholar 

  15. Morgan DML (1998) Polyamines: an introduction. In: Morgan DML (ed) Polyamine protocols. Humana Press, Clifton, pp 3–30

    Google Scholar 

  16. Hsu PC, Hung HC, Liao YF, Liu CC, Tsay GJ, Liu GY (2008) Ornithine decarboxylase attenuates leukemic chemotherapy drugs-induced cell apoptosis and arrest in human promyelocytic HL-60 cells. Leuk Res 32:1530–1540

    Article  PubMed  CAS  Google Scholar 

  17. Hu HY, Liu XX, Jiang CY et al (2005) Ornithine decarboxylase gene is overexpressed in colorectal carcinoma. World J Gastroenterol 11:2244–2248

    PubMed  CAS  Google Scholar 

  18. Parchment RE, Pierce GB (1989) Polyamine oxidation, programmed cell death, and regulation of melanoma in the murine embryonic limb. Cancer Res 49:6680–6686

    PubMed  CAS  Google Scholar 

  19. Casero RA Jr, Pegg AE (1993) Spermidine/spermine N 1-acetyltransferase—the turning point in polyamine metabolism. Faseb J 7:653–661

    PubMed  CAS  Google Scholar 

  20. Wu T, Yankovskaya V, McIntire WS (2003) Cloning, sequencing, and heterologous expression of the murine peroxisomal flavoprotein, N 1-acetylated polyamine oxidase. J Biol Chem 278:20514–20525

    Article  PubMed  CAS  Google Scholar 

  21. Allen WL, McLean EG, Boyer J et al (2007) The role of spermidine/spermine N 1-acetyltransferase in determining response to chemotherapeutic agents in colorectal cancer cells. Mol Cancer Ther 6:128–137

    Article  PubMed  CAS  Google Scholar 

  22. Coker A, Arisan ED, Palavan-Unsal N (2012) Silencing of the polyamine catabolic key enzyme SSAT prevents CDK inhibitor-induced apoptosis in CaCo-2 colon cancer cells. Mol Med Rep 5:1037–1042

    PubMed  CAS  Google Scholar 

  23. Garrofé-Ochoa X, Cosialls AM, Ribas J, Gil J, Boix J (2011) Transcriptional modulation of apoptosis regulators by roscovitine and related compounds. Apoptosis 16(7):660–670

    Article  PubMed  Google Scholar 

  24. Haan C, Behrmann I (2007) A cost effective non-commercial ECL-solution for Western blot detections yielding strong signals and low background. J Immunol Methods 318:11–19

    Article  PubMed  CAS  Google Scholar 

  25. Senderowicz AM (2003) Novel direct and indirect cyclin-dependent kinase modulators for the prevention and treatment of human neoplasms. Cancer Chemother Pharmacol 52:S61–S73

    Article  PubMed  CAS  Google Scholar 

  26. Maurer M, Komina O, Wesierska-Gadek J (2009) Roscovitine differentially affects asynchronously growing and synchronized human MCF-7 breast cancer cells. Ann N Y Acad Sci 1171:250–256

    Article  PubMed  CAS  Google Scholar 

  27. Villerbu N, Gaben AM, Redeuilh G, Mester J (2002) Cellular effects of purvalanol A: a specific inhibitor of cyclin-dependent kinase activities. Int J Cancer 97:761–769

    Article  PubMed  CAS  Google Scholar 

  28. Abaza MS, Bahman AM, Al-Attiyah RJ (2008) Roscovitine synergizes with conventional chemo-therapeutic drugs to induce efficient apoptosis of human colorectal cancer cells. World J Gastroenterol 14:5162–5175

    Article  PubMed  CAS  Google Scholar 

  29. Wesierska-Gadek J, Gueorguieva M, Wojciechowski J, Horky M (2004) Cell cycle arrest induced in human breast cancer cells by cyclin-dependent kinase inhibitors: a comparison of the effects exerted by roscovitine and olomoucine. Pol J Pharmacol 56:635–641

    Article  PubMed  CAS  Google Scholar 

  30. Wesierska-Gadek J, Wandl S, Kramer MP, Pickem C, Krystof V, Hajek SB (2008) Roscovitine up-regulates p53 protein and induces apoptosis in human HeLaS(3) cervix carcinoma cells. J Cell Biochem 105:1161–1171

    Article  PubMed  CAS  Google Scholar 

  31. Knockaert M, Lenormand P, Gray N, Schultz P, Pouyssegur J, Meijer L (2002) p42/p44 MAPKs are intracellular targets of the CDK inhibitor purvalanol. Oncogene 21:6413–6424

    Article  PubMed  CAS  Google Scholar 

  32. Herr I, Debatin KM (2001) Cellular stress response and apoptosis in cancer therapy. Blood 98:2603–2614

    Article  PubMed  CAS  Google Scholar 

  33. Hahntow IN, Schneller F, Oelsner M et al (2004) Cyclin-dependent kinase inhibitor roscovitine induces apoptosis in chronic lymphocytic leukemia cells. Leukemia 18:747–755

    Article  PubMed  CAS  Google Scholar 

  34. Rosato RR, Almenara JA, Maggio SC et al (2005) Potentiation of the lethality of the histone deacetylase inhibitor LAQ824 by the cyclin-dependent kinase inhibitor roscovitine in human leukemia cells. Mol Cancer Ther 4:1772–1785

    Article  PubMed  CAS  Google Scholar 

  35. Hamana K, Matsuzaki S (1992) Polyamines as a chemotaxonomic marker in bacterial systematics. Crit Rev Microbiol 18:261–283

    Article  PubMed  CAS  Google Scholar 

  36. McGarrity TJ, Peiffer LP, Bartholomew MJ, Pegg AE (1990) Colonic polyamine content and ornithine decarboxylase activity as markers for adenomas. Cancer 66:1539–1543

    Article  PubMed  CAS  Google Scholar 

  37. Pegg AE (1988) Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res 48:759–774

    PubMed  CAS  Google Scholar 

  38. Devens BH, Weeks RS, Burns MR, Carlson CL, Brawer MK (2000) Polyamine depletion therapy in prostate cancer. Prostate Cancer Prostatic Dis 3:275–279

    Article  PubMed  CAS  Google Scholar 

  39. Kramer DL, Chang BD, Chen Y et al (2001) Polyamine depletion in human melanoma cells leads to G1 arrest associated with induction of p21WAF1/CIP1/SDI1, changes in the expression of p21-regulated genes, and a senescence-like phenotype. Cancer Res 61:7754–7762

    PubMed  CAS  Google Scholar 

  40. Casero RA Jr, Woster PM (2001) Terminally alkylated polyamine analogues as chemotherapeutic agents. J Med Chem 44:1–26

    Article  PubMed  CAS  Google Scholar 

  41. Casero RA Jr, Celano P, Ervin SJ, Wiest L, Pegg AE (1990) High specific induction of spermidine/spermine N 1-acetyltransferase in a human large cell lung carcinoma. Biochem J 270:615–620

    PubMed  CAS  Google Scholar 

  42. Bolkenius FN, Bey P, Seiler N (1985) Specific inhibition of polyamine oxidase in vivo is a method for the elucidation of its physiological role. Biochim Biophys Acta 838:69–76

    Article  PubMed  CAS  Google Scholar 

  43. Hu RH, Pegg AE (1997) Rapid induction of apoptosis by deregulated uptake of polyamine analogues. Biochem J 328:307–316

    PubMed  CAS  Google Scholar 

  44. Ha HC, Woster PM, Yager JD, Casero RA Jr (1997) The role of polyamine catabolism in polyamine analogue-induced programmed cell death. Proc Natl Acad Sci USA 94:11557–11562

    Article  PubMed  CAS  Google Scholar 

  45. Dai H, Kramer DL, Yang C, Murti KG, Porter CW, Cleveland JL (1999) The polyamine oxidase inhibitor MDL-72,527 selectively induces apoptosis of transformed hematopoietic cells through lysosomotropic effects. Cancer Res 59:4944–4954

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Tuğba Kızılboğa for technical assistance during the study. This study was supported by TUBITAK (The Scientific and Technical Research. Council of Turkey, Project number: 108T630) and Istanbul Kultur University Scientific Projects Support Center.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Damla Arısan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gürkan, A.Ç., Arısan, E.D., Obakan, P. et al. Inhibition of polyamine oxidase prevented cyclin-dependent kinase inhibitor-induced apoptosis in HCT 116 colon carcinoma cells. Apoptosis 18, 1536–1547 (2013). https://doi.org/10.1007/s10495-013-0885-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0885-8

Keywords

Navigation