Skip to main content
Log in

Live fluorescence and transmission-through-dye microscopic study of actinomycin D-induced apoptosis and apoptotic volume decrease

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The effect of actinomycin D on HeLa cells was studied by live fluorescence and transmission-through-dye microscopy—a recently developed technique that permits volume measurements in live cells. In particular, it is well suited for the observation and quantification of the apoptotic volume decrease (AVD), which is widely viewed as an essential feature of apoptosis. The main results from our study are as follows. (1) Apoptosis caused in HeLa cells by actinomycin D proceeds in two morphologically distinct stages: the early stage is characterized by extensive blebbing, and the late stage by a more compact shape. The loss of mitochondrial membrane potential occurs at about the same time as blebbing, and chromatin condensation follows 30–90 min later. Caspase-3 and 7 become activated during the late stage. (2) Because blebbing occurs before activation of caspase-3, it has to be initiated by a different mechanism. Although blebbing is one of the earliest observable changes, it can be selectively inhibited without affecting other apoptotic reactions. (3) The majority of cells experience a temporary volume increase after the appearance of blebs. Eventually, AVD takes over and the cells shrink by approximately 40 % of their initial volume; the volume loss becomes noticeable at the end of the blebbing phase and continues through the late stage. Sometimes, at the end of long incubations, shrinkage gives way to swelling, possibly indicating secondary necrosis. (4) Both early and late apoptosis are accompanied by intracellular accumulation of Na+, while low-sodium medium prevents apoptosis. Except for a partial protective effect of quinine, all of the tested blockers of Na+, K+ and Cl channels failed to prevent apoptosis or AVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. There is no doubt that some latent changes were developing in visibly normal cells prior to blebbing and depolarization of mitochondria, and therefore the terms “early” and “late” should be understood as a purely operational definition.

References

  1. Kerr JF (1971) Shrinkage necrosis: a distinct mode of cellular death. J Pathol 105:13–20. doi:10.1002/path.1711050103

    Article  PubMed  CAS  Google Scholar 

  2. Willingham MC (1999) Cytochemical methods for the detection of apoptosis. J Histochem Cytochem 47:1101–1110. doi:10.1177/002215549904700901

    Article  PubMed  CAS  Google Scholar 

  3. Ziegler U, Groscurth P (2004) Morphological features of cell death. News Physiol Sci 19:124–128. doi:10.1152/nips.01519.2004

    PubMed  CAS  Google Scholar 

  4. Mashima T, Naito M, Tsuruo T (1999) Caspase-mediated cleavage of cytoskeletal actin plays a positive role in the process of morphological apoptosis. Oncogene 18:2423–2430. doi:10.1038/sj.onc.1202558

    Article  PubMed  CAS  Google Scholar 

  5. Kothakota S, Azuma T, Reinhard C, Klippel A, Tang J, Chu K, McGarry TJ, Kirschner MW, Koths K, Kwiatkowski DJ, Williams LT (1997) Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278:294–298. doi:10.1126/science.278.5336.294

    Article  PubMed  CAS  Google Scholar 

  6. Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF (2001) Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 3:339–345. doi:10.1038/35070009

    Article  PubMed  CAS  Google Scholar 

  7. Ndozangue-Touriguine O, Hamelin J, Bréard J (2008) Cytoskeleton and apoptosis. Biochem Pharmacol 76:11–18. doi:10.1016/j.bcp.2008.03.016

    Article  PubMed  CAS  Google Scholar 

  8. Cotter TG, Lennon SV, Glynn JM, Green DR (1992) Microfilament-disrupting agents prevent the formation of apoptotic bodies in tumor cells undergoing apoptosis. Cancer Res 52:997–1005

    PubMed  CAS  Google Scholar 

  9. Marushige Y, Marushige K (1998) Alterations in focal adhesion and cytoskeletal proteins during apoptosis. Anticancer Res 18:301–307

    PubMed  CAS  Google Scholar 

  10. Wen L-P, Fahri JA, Troie S, Guan J-L, Orth K, Rosen GD (1997) Cleavage of focal adhesion kinase by caspases during apoptosis. J Biol Chem 272:26056–26061. doi:10.1074/jbc.272.41.26056

    Article  PubMed  CAS  Google Scholar 

  11. Kim S, Kim DH, Shim SR, Kim W, Chun JS, Song WK (2003) Caspase-dependent cleavage of tensin induces disruption of actin cytoskeleton during apoptosis. Biochem Biophys Res Commun 303:37–45

    Article  PubMed  Google Scholar 

  12. McCarthy JV, Cotter TG (1997) Cell shrinkage and apoptosis: a role for potassium and sodium ion efflux. Cell Death Differ 4:756–770. doi:10.1038/sj.cdd.4400296

    Article  PubMed  CAS  Google Scholar 

  13. Maeno E, Ishizaki Y, Kanaseki T, Hazama A, Okada Y (2000) Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc Natl Acad Sci USA 97:9487–9492. doi:10.1073/pnas.140216197

    Article  PubMed  CAS  Google Scholar 

  14. Hessler JA, Budor A, Putchakayala K, Mecke A, Rieger D, Banaszak Holl MM, Orr BG, Bielinska A, Beals J, Baker J Jr (2005) Atomic force microscopy study of early morphological changes during apoptosis. Langmuir 21:9280–9286. doi:10.1021/la051837g

    Article  PubMed  CAS  Google Scholar 

  15. Okada Y, Maeno E, Shimizu T, Dezaki K, Wang J, Morishima S (2001) Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J Physiol 532:3–16. doi:10.1111/j.1469-7793.2001.0003g.x

    Article  PubMed  CAS  Google Scholar 

  16. Dezaki K, Maeno E, Sato K, Akita T, Okada Y (2012) Early-phase occurrence of K+ and Cl efflux in addition to Ca2+ mobilization is a prerequisite to apoptosis in HeLa cells. Apoptosis 17:821–831. doi:10.1007/s10495-012-0716-3

    Article  PubMed  CAS  Google Scholar 

  17. Bortner CD, Hughes FM Jr, Cidlowski JA (1997) A primary role for K+ and Na+ efflux in the activation of apoptosis. J Biol Chem 272:32436–32442. doi:10.1074/jbc.272.51.32436

    Article  PubMed  CAS  Google Scholar 

  18. Ernest NJ, Habela CW, Sontheimer H (2008) Cytoplasmic condensation is both necessary and sufficient to induce apoptotic cell death. J Cell Sci 121:290–297. doi:10.1242/jcs.017343

    Article  PubMed  CAS  Google Scholar 

  19. Friis MB, Friborg CR, Schneider L, Nielsen MB, Lambert IH, Christensen ST, Hoffmann EK (2005) Cell shrinkage as a signal to apoptosis in NIH 3T3 fibroblasts. J Physiol 567:427–443. doi:10.1113/jphysiol.2005.087130

    Article  PubMed  CAS  Google Scholar 

  20. Bortner CD, Cidlowski JA (2007) Cell shrinkage and monovalent cation fluxes: role in apoptosis. Arch Biochem Biophys 462:176–188. doi:10.1016/j.abb.2007.01.020

    Article  PubMed  CAS  Google Scholar 

  21. Wang Z (2004) Roles of K+ channels in regulating tumour cell proliferation and apoptosis. Pflugers Arch 448:274–286. doi:10.1007/s00424-004-1258-5

    Article  PubMed  CAS  Google Scholar 

  22. Yu SP (2003) Regulation and critical role of potassium homeostasis in apoptosis. Prog Neurobiol 70:363–386. doi:10.1016/S0301-0082(03)00090-X

    Article  PubMed  CAS  Google Scholar 

  23. Hortelano S, Zeini M, Castrillo A, Alvarez AM, Boscá L (2002) Induction of apoptosis by nitric oxide in macrophages is independent of apoptotic volume decrease. Cell Death Differ 9:643–650. doi:10.1038/sj.cdd.4401017

    Article  PubMed  CAS  Google Scholar 

  24. Bortner CD, Cidlowski JA (2003) Uncoupling cell shrinkage from apoptosis reveals that Na+ influx is required for volume loss during programmed cell death. J Biol Chem 278:39176–39184. doi:10.1074/jbc.M303516200

    Article  PubMed  CAS  Google Scholar 

  25. Yurinskaya V, Goryachaya T, Guzhova I, Moshkov A, Rozanov Y, Sakuta G, Shirokova A, Shumilina E, Vassilieva I, Lang F, Vereninov A (2005) Potassium and sodium balance in U937 cells during apoptosis with and without cell shrinkage. Cell Physiol Biochem 16:155–162. doi:10.1159/000089841

    Article  PubMed  CAS  Google Scholar 

  26. Krumschnabel G, Maehr T, Nawaz M, Schwarzbaum PJ, Manzl C (2007) Staurosporine-induced cell death in salmonid cells: the role of apoptotic volume decrease, ion fluxes and MAP kinase signaling. Apoptosis 12:1755–1768. doi:10.1007/s10495-007-0103-7

    Article  PubMed  CAS  Google Scholar 

  27. Wei L, Xiao AY, Jin C, Yang A, Lu ZY, Yu SP (2004) Effects of chloride and potassium channel blockers on apoptotic cell shrinkage and apoptosis in cortical neurons. Pflugers Arch 448:325–334. doi:10.1007/s00424-004-1277-2

    Article  PubMed  CAS  Google Scholar 

  28. Platonova A, Koltsova SV, Hamet P, Grygorczyk R, Orlov SN (2012) Swelling rather than shrinkage precedes apoptosis in serum-deprived vascular smooth muscle cells. Apoptosis 17:429–438. doi:10.1007/s10495-011-0694-x

    Article  PubMed  CAS  Google Scholar 

  29. Poulsen KA, Andersen EC, Hansen CF, Klausen TK, Hougaard C, Lambert IH, Hoffmann EK (2010) Deregulation of apoptotic volume decrease and ionic movements in multidrug-resistant tumor cells: role of chloride channels. Am J Physiol Cell Physiol 298:C14–C25. doi:10.1152/ajpcell.00654.2008

    Article  PubMed  CAS  Google Scholar 

  30. Fiers W, Beyaert R, Declercq W, Vandenabeele P (1999) More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18:7719–7730. doi:10.1038/sj.onc.1203249

    Article  PubMed  CAS  Google Scholar 

  31. Silva MT (2010) Secondary necrosis: the natural outcome of the complete apoptotic program. FEBS Lett 584:4491–4499. doi:10.1016/j.febslet.2010.10.046

    Article  PubMed  CAS  Google Scholar 

  32. Chacon E, Reece JM, Nieminen AL, Zahrebelski G, Herman B, Lemasters JJ (1994) Distribution of electrical potential, pH, free Ca2+, and volume inside cultured adult rabbit cardiac myocytes during chemical hypoxia: a multiparameter digitized confocal microscopic study. Biophys J 66:942–952. doi:10.1016/S0006-3495(94)80904-X

    Article  PubMed  CAS  Google Scholar 

  33. Lionetto MG, Giordano ME, Calisi A, Caricato R, Hoffmann E, Schettino T (2010) Role of BK channels in the apoptotic volume decrease in native eel intestinal cells. Cell Physiol Biochem 25:733–744. doi:10.1159/000315093

    Article  PubMed  CAS  Google Scholar 

  34. Curtis MJ, Wolpert TJ (2004) The victorin-induced mitochondrial permeability transition precedes cell shrinkage and biochemical markers of cell death, and shrinkage occurs without loss of membrane integrity. Plant J 38:244–259. doi:10.1111/j.1365-313X.2004.02040.x

    Article  PubMed  CAS  Google Scholar 

  35. Boudreault F, Grygorczyk R (2004) Evaluation of rapid volume changes of substrate-adherent cells by conventional microscopy 3D imaging. J Microsc 215:302–312. doi:10.1111/j.0022-2720.2004.01378.x

    Article  PubMed  CAS  Google Scholar 

  36. Platonova A, Koltsova S, Maksimov GV, Grygorczyk R, Orlov SN (2011) The death of ouabain-treated renal epithelial C11-MDCK cells is not mediated by swelling-induced plasma membrane rupture. J Membr Biol 241:145–154. doi:10.1007/s00232-011-9371-9

    Article  PubMed  CAS  Google Scholar 

  37. Model MA (2012) Imaging the cell’s third dimension. Microsc Today 20:32–37. doi:10.1017/S1551929512000247

    Article  Google Scholar 

  38. Kuželová K, Grebeňová D, Brodská B (2011) Dose-dependent effects of the caspase inhibitor Q-VD-OPh on different apoptosis-related processes. J Cell Biochem 112:3334–3342. doi:10.1002/jcb.23263

    Article  PubMed  Google Scholar 

  39. Model MA, Khitrin AK, Blank JL (2008) Measurement of the absorption of concentrated dyes and their use for quantitative imaging of surface topography. J Microsc 231:156–167. doi:10.1111/j.1365-2818.2008.02026.x

    Article  PubMed  CAS  Google Scholar 

  40. Gregg JL, McGuire KM, Focht DC, Model MA (2010) Measurement of the thickness and volume of adherent cells using transmission-through-dye microscopy. Pflugers Arch 460:1097–1104. doi:10.1007/s00424-010-0869-2

    Article  PubMed  CAS  Google Scholar 

  41. Pelts M, Pandya SM, Oh CJ, Model MA (2011) Thickness profiling of formaldehyde-fixed cells by transmission-through-dye microscopy. Biotechniques 50:389–396

    Article  PubMed  CAS  Google Scholar 

  42. Lababidi SL, Pelts M, Moitra M, Leff LG, Model MA (2011) Measurement of bacterial volume by transmission-through-dye imaging. J Microbiol Methods 87:375–377. doi:10.1016/j.mimet.2011.08.019

    Article  PubMed  Google Scholar 

  43. Kuzelová K, Grebenová D, Hrkal Z (2007) Labeling of apoptotic JURL-MK1 cells by fluorescent caspase-3 inhibitor FAM-DEVD-fmk occurs mainly at site(s) different from caspase-3 active site. Cytometry A 71:605–611. doi:10.1002/cyto.a.20415

    PubMed  Google Scholar 

  44. Goldstein MN, Slotnik IJ, Journey LJ (1960) In vitro studies with HeLa cell lines sensitive and resistant to actinomycin D. Ann N Y Acad Sci 89:474–483. doi:10.1111/j.1749-6632.1960.tb20171.x

    Article  PubMed  CAS  Google Scholar 

  45. Clark AM, Love R, Studzinski GP, Ellem KA (1967) A correlated morphological and functional study of the effects of actinomycin D on HeLa cells. I. Effects on the nucleolar and cytoplasmic ribonucleoproteins. Exp Cell Res 45:106–119. doi:10.1016/0014-4827(67)90116-4

    Article  PubMed  CAS  Google Scholar 

  46. Chou CC, Lam CY, Yung BY (1995) Intracellular ATP is required for actinomycin D-induced apoptotic cell death in HeLa cells. Cancer Lett 96:181–187. doi:10.1016/0304-3835(95)03927-O

    Article  PubMed  CAS  Google Scholar 

  47. Goldstein JC, Waterhouse NJ, Juin P, Evan GI, Green DR (2000) The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol 2:156–162

    Article  PubMed  CAS  Google Scholar 

  48. Gao W, Pu Y, Luo KQ, Chang DC (2001) Temporal relationship between cytochrome c release and mitochondrial swelling during UV-induced apoptosis in living HeLa cells. J Cell Sci 114:2855–2862

    PubMed  CAS  Google Scholar 

  49. Fraschini A, Bottone MG, Scovassi AI, Denegri M, Risueño MC, Testillano PS, Martin TE, Biggiogera M, Pellicciari C (2005) Changes in extranucleolar transcription during actinomycin D-induced apoptosis. Histol Histopathol 20:107–117

    PubMed  CAS  Google Scholar 

  50. Bilney AJ, Murray AW (1998) Pro- and anti-apoptotic effects of K+ in HeLa cells. FEBS Lett 424:221–224. doi:10.1016/S0014-5793(98)00172-0

    Article  PubMed  CAS  Google Scholar 

  51. Maeno E, Takahashi N, Okada Y (2006) Dysfunction of regulatory volume increase is a key component of apoptosis. FEBS Lett 580:6513–6517. doi:10.1016/j.febslet.2006.10.074

    Article  PubMed  CAS  Google Scholar 

  52. Hasegawa Y, Shimizu T, Takahashi N, Okada Y (2012) The apoptotic volume decrease is an upstream event of MAP kinase activation during staurosporine-induced apoptosis in HeLa cells. Int J Mol Sci 13:9363–9379. doi:10.3390/ijms13079363

    Article  PubMed  CAS  Google Scholar 

  53. Barrett KL, Willingham JM, Garvin AJ, Willingham MC (2001) Advances in cytochemical methods for detection of apoptosis. J Histochem Cytochem 49:821–832. doi:10.1177/002215540104900703

    Article  PubMed  CAS  Google Scholar 

  54. Galluzzi L, Aaronson SA, Abrams J, Alnemri ES, Andrews DW, Baehrecke EH, Bazan NG, Blagosklonny MV, Blomgren K, Borner C, Bredesen DE, Brenner C, Castedo M, Cidlowski JA, Ciechanover A, Cohen GM, De Laurenzi V, De Maria R, Deshmukh M, Dynlacht BD, El-Deiry WS, Flavell RA, Fulda S, Garrido C, Golstein P, Gougeon ML, Green DR, Gronemeyer H, Hajnóczky G, Hardwick JM, Hengartner MO, Ichijo H, Jäättelä M, Kepp O, Kimchi A, Klionsky DJ, Knight RA, Kornbluth S, Kumar S, Levine B, Lipton SA, Lugli E, Madeo F, Malomi W, Marine JC, Martin SJ, Medema JP, Mehlen P, Melino G, Moll UM, Morselli E, Nagata S, Nicholson DW, Nicotera P, Nuñez G, Oren M, Penninger J, Pervaiz S, Peter ME, Piacentini M, Prehn JH, Puthalakath H, Rabinovich GA, Rizzuto R, Rodrigues CM, Rubinsztein DC, Rudel T, Scorrano L, Simon HU, Steller H, Tschopp J, Tsujimoto Y, Vandenabeele P, Vitale I, Vousden KH, Youle RJ, Yuan J, Zhivotovsky B, Kroemer G (2009) Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ 16:1093–1107

    Article  PubMed  CAS  Google Scholar 

  55. Gómez-Angelats M, Cidlowski JA (2002) Cell volume and ion changes during apoptotic cell death. Adv Cancer Res 85:175–201. doi:10.1016/S0065-230X(02)85006-0

    Article  PubMed  Google Scholar 

  56. Formigli L, Papucci L, Tani A, Schiavone N, Tempestini A, Orlandini GE, Capaccioli S, Orlandini SZ (2000) Aponecrosis: morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis. J Cell Physiol 182:41–49. doi:10.1002/(SICI)1097-4652(200001)182:1<41:AID-JCP5>3.0.CO;2-7

    Article  PubMed  CAS  Google Scholar 

  57. Yu SP (2003) Na + , K + -ATPase: the new face of an old player in pathogenesis and apoptotic/hybrid cell death. Biochem Pharmacol 66:1601–1609. doi:10.1016/S0006-2952(03)00531-8

    Article  PubMed  CAS  Google Scholar 

  58. Bock J, Szabó I, Jekle A, Gulbins E (2002) Actinomycin D-induced apoptosis involves the potassium channel Kv1.3. Biochem Biophys Res Commun 295:526–531. doi:10.1016/S0006-291X(02)00695-2

    Article  PubMed  CAS  Google Scholar 

  59. Orlov SN, Thorin-Trescases N, Kotelevtsev SV, Tremblay J, Hamet P (1999) Inversion of the intracellular Na+/K+ ratio blocks apoptosis in vascular smooth muscle at a site upstream of caspase-3. J Biol Chem 274:16545–16552. doi:10.1074/jbc.274.23.16545

    Article  PubMed  CAS  Google Scholar 

  60. Panayiotidis MI, Bortner CD, Cidlowski JA (2006) On the mechanism of ionic regulation of apoptosis: would the Na+/K+-ATPase please stand up? Acta Physiol (Oxf) 187:205–215. doi:10.1111/j.1748-1716.2006.01562.x

    Article  CAS  Google Scholar 

  61. Yurinskaya VE, Rubashkin AA, Vereninov AA (2011) Balance of unidirectional monovalent ion fluxes in cells undergoing apoptosis: why does Na+/K+ pump suppression not cause cell swelling? J Physiol 589:2197–2211. doi:10.1113/jphysiol.2011.207571

    Article  PubMed  CAS  Google Scholar 

  62. Platonova A, Koltsova S, Maksimov GV, Grygorczyk R, Orlov SN (2011) The death of ouabain-treated renal epithelial C11-MDCK cells is not mediated by swelling-induced plasma membrane rupture. J Membr Biol 241:145–514. doi:10.1007/s00232-011-9371-9

    Article  PubMed  CAS  Google Scholar 

  63. Fels J, Orlov SN, Grygorczyk R (2009) The hydrogel nature of mammalian cytoplasm contributes to osmosensing and extracellular pH sensing. Biophys J 96:4276–4285. doi:10.1016/j.bpj.2009.02.038

    Article  PubMed  CAS  Google Scholar 

  64. Crawford ED, Wells JA (2011) Caspase substrates and cellular remodeling. Annu Rev Biochem 80:1055–1087. doi:10.1146/annurev-biochem-061809-121639

    Article  PubMed  CAS  Google Scholar 

  65. Lang F, Madlung J, Uhlemann AC, Risler T, Gulbins E (1998) Cellular taurine release triggered by stimulation of the Fas(CD95) receptor in Jurkat lymphocytes. Pflugers Arch 436:377–383. doi:10.1007/s004240050646

    Article  PubMed  CAS  Google Scholar 

  66. Sreedhar AS, Csermely P (2004) Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. Pharmacol Ther 101:227–257

    Article  PubMed  CAS  Google Scholar 

  67. Lew VL, Bookchin RM (2005) Ion transport pathology in the mechanism of sickle cell dehydration. Physiol Rev 85:179–200. doi:10.1152/physrev.00052.2003

    Article  PubMed  CAS  Google Scholar 

  68. Spagnoli C, Beyder A, Besch S, Sachs F (2008) Atomic force microscopy analysis of cell volume regulation. Phys Rev E Stat Nonlin Soft Matter Phys 78:031916

    Article  PubMed  Google Scholar 

  69. Domnina LV, Ivanova OY, Cherniak BV, Skulachev VP, Vasiliev JM (2002) Effects of the inhibitors of dynamics of cytoskeletal structures on the development of apoptosis induced by the tumor necrosis factor. Biochemistry (Mosc) 67:737–746

    Article  CAS  Google Scholar 

  70. Brown TL, Patil S, Cianci CD, Morrow JS, Howe PH (1999) Transforming growth factor β induces caspase 3-independent cleavage of αII-spectrin (α-fodrin) coincident with apoptosis. J Biol Chem 274:23256–23262. doi:10.1074/jbc.274.33.23256

    Article  PubMed  CAS  Google Scholar 

  71. Cui Q, Yu JH, Wu JN, Tashiro S, Onodera S, Minami M, Ikejima T (2007) P53-mediated cell cycle arrest and apoptosis through a caspase-3- independent, but caspase-9-dependent pathway in oridonin-treated MCF-7 human breast cancer cells. Acta Pharmacol Sin 28:1057–1066. doi:10.1111/j.1745-7254.2007.00588.x

    Article  PubMed  CAS  Google Scholar 

  72. Higuchi M, Honda T, Proske RJ, Yeh ET (1998) Regulation of reactive oxygen species-induced apoptosis and necrosis by caspase 3-like proteases. Oncogene 17:2753–2760. doi:10.1038/sj.onc.1202211

    Article  PubMed  CAS  Google Scholar 

  73. Sebbagh M, Hamelin J, Bertoglio J, Solary E, Bréard J (2005) Direct cleavage of ROCK II by granzyme B induces target cell membrane blebbing in a caspase-independent manner. J Exp Med 201:465–471. doi:10.1084/jem.20031877

    Article  PubMed  CAS  Google Scholar 

  74. Harwood SM, Yaqoob MM, Allen DA (2005) Caspase and calpain function in cell death: bridging the gap between apoptosis and necrosis. Ann Clin Biochem 42:415–431. doi:10.1258/000456305774538238

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Akwasi Minta (Teflabs) for providing Asante Potassium dyes. Various parts of the work have been discussed with Francisco Javier Alvarez-Leefmans (Wright State University, Dayton) and Aleksey A. Vereninov (Institute of Cytology, St. Petersburg), who also suggested important improvements to the manuscript. We also thank Sarah Khoncarly for critically reading the draft. We acknowledge the contribution of Mariana Pelts who was involved in some of the initial experiments. The work was supported by NIH grant 1R15GM186816, by the Kent State Initiative for Clinical and Translational Research, and by the Ohio Board of Regents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Model.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6136 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasim, N.R., Kuželová, K., Holoubek, A. et al. Live fluorescence and transmission-through-dye microscopic study of actinomycin D-induced apoptosis and apoptotic volume decrease. Apoptosis 18, 521–532 (2013). https://doi.org/10.1007/s10495-013-0804-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0804-z

Keywords

Navigation