Skip to main content

Advertisement

Log in

Autophagy modulators sensitize prostate epithelial cancer cell lines to TNF-alpha-dependent apoptosis

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

TNF-alpha levels in prostate cancer correlate with the extent of disease and are significantly elevated in the metastatic stage. TNF receptor superfamily controls two distinct signalling cascades, leading to opposite effects, i.e. apoptosis and survival; in prostate cancer TNF-alpha-mediated signalling induces cell survival and resistance to therapy. The apoptosis of prostate epithelial cancer cells LNCaP and PC3 was investigated upon treatment with the autophagy inhibitor 3-methyladenine and the autophagy inducer rapamycin, in combination with TNF-alpha. Cells were exposed to these molecules for 18, 24 and 48 h. Autophagy was assessed via LC3 Western blot analysis; propidium iodide and TUNEL stainings followed by flow cytometry or caspase-8 and caspase-3 activation assays were performed to evaluate apoptosis. TNF-alpha-induced apoptosis was potentiated by 3-methyladenine in the androgen-responsive LNCaP cells, whereas no effect was observed in the androgen-insensitive PC3 cells. Interestingly such pro-apoptosis effect in LNCaP cells was associated with reduced c-Flip levels through proteasomal degradation via increased reactive oxygen species production and p38 activation; such c-Flip reduction was reversed in the presence of either the proteasome inhibitor MG132 or the reactive oxygen species scavenger N-acetyl-cysteine. Conversely in PC3 but not in LNCaP cells, rapamycin stimulated TNF-alpha-dependent apoptosis; such effect was associated with reduced c-Flip promoter activity and FoxO3a activation. We conclude that TNF-alpha-induced apoptosis may be potentiated, in prostate cancer epithelial cells, through autophagy modulators. Increased sensitivity to TNF-alpha-dependent apoptosis correlates with reduced c-Flip levels which are consequent to a post-transcriptional and a transcriptional mechanism in LNCaP and PC3 cells respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Michalaki V, Syrigos K, Charles P, Waxman J (2004) Serum levels of IL-6 and TNF-alpha correlate with clinicopathological features and patient survival in patients with prostate cancer. Br J Cancer 90:2312–2316

    PubMed  CAS  Google Scholar 

  2. Srinivasan S, Kumar R, Koduru S, Chandramouli A, Damodaran C (2010) Inhibiting TNF-mediated signaling: a novel therapeutic paradigm for androgen independent prostate cancer. Apoptosis 15:153–161

    Article  PubMed  CAS  Google Scholar 

  3. Ekert PG, Silke J, Vaux DL (1999) Caspase inhibitors. Cell Death Differ 6:1081–1086

    Article  PubMed  CAS  Google Scholar 

  4. Nastiuk KL, Krolewski JJ (2008) FLIP-ping out: death receptor signaling in the prostate. Cancer Biol Ther 7:1171–1179

    Article  PubMed  CAS  Google Scholar 

  5. Srinivasula SM, Ahmad M, Ottilie S, Bullrich F, Banks S, Wang Y, Fernandes-Alnemri T, Croce CM, Litwack G, Tomaselli KJ, Armstrong RC, Alnemri ES (1997) FLAME-1, a novel FADD-like anti-apoptotic molecule that regulates Fas/TNFR1-induced apoptosis. J Biol Chem 272:18542–18545

    Article  PubMed  CAS  Google Scholar 

  6. Safa AR, Day TW, Wu CH (2008) Cellular FLICE-like inhibitory protein (C-FLIP): a novel target for cancer therapy. Curr Cancer Drug Targets 8:37–46

    Article  PubMed  CAS  Google Scholar 

  7. Kim Y, Suh N, Sporn M, Reed JC (2002) An inducible pathway for degradation of FLIP protein sensitizes tumor cells to TRAIL-induced apoptosis. J Biol Chem 277:22320–22329

    Article  PubMed  CAS  Google Scholar 

  8. Poukkula M, Kaunisto A, Hietakangas V, Denessiouk K, Katajamaki T, Johnson MS, Sistonen L, Eriksson JE (2005) Rapid turnover of c-FLIPshort is determined by its unique C-terminal tail. J Biol Chem 280:27345–27355

    Article  PubMed  CAS  Google Scholar 

  9. Kundu M, Pathak SK, Kumawat K, Basu S, Chatterjee G, Pathak S, Noguchi T, Takeda K, Ichijo H, Thien CB, Langdon WY, Basu J (2009) A TNF- and c-Cbl-dependent FLIP(S)-degradation pathway and its function in Mycobacterium tuberculosis-induced macrophage apoptosis. Nat Immunol 10:918–926

    Article  PubMed  CAS  Google Scholar 

  10. Zhang X, Zhang L, Yang H, Huang X, Otu H, Libermann TA, DeWolf WC, Khosravi-Far R, Olumi AF (2007) c-Fos as a proapoptotic agent in TRAIL-induced apoptosis in prostate cancer cells. Cancer Res 67:9425–9434

    Article  PubMed  CAS  Google Scholar 

  11. Cornforth AN, Davis JS, Khanifar E, Nastiuk KL, Krolewski JJ (2008) FOXO3a mediates the androgen-dependent regulation of FLIP and contributes to TRAIL-induced apoptosis of LNCaP cells. Oncogene 27:4422–4433

    Article  PubMed  CAS  Google Scholar 

  12. Skurk C, Maatz H, Kim HS, Yang J, Abid MR, Aird WC, Walsh K (2004) The Akt-regulated forkhead transcription factor FOXO3a controls endothelial cell viability through modulation of the caspase-8 inhibitor FLIP. J Biol Chem 279:1513–1525

    Article  PubMed  CAS  Google Scholar 

  13. Raclaw KA, Heemers HV, Kidd EM, Dehm SM, Tindall DJ (2008) Induction of FLIP expression by androgens protects prostate cancer cells from TRAIL-mediated apoptosis. Prostate 68:1696–1706

    Article  PubMed  CAS  Google Scholar 

  14. Mortimore GE, Hutson NJ, Surmacz CA (1983) Quantitative correlation between proteolysis and macro- and microautophagy in mouse hepatocytes during starvation and refeeding. Proc Natl Acad Sci USA 80:2179–2183

    Article  PubMed  CAS  Google Scholar 

  15. Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293

    Article  PubMed  CAS  Google Scholar 

  16. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Article  PubMed  CAS  Google Scholar 

  17. Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gelinas C, Fan Y, Nelson DA, Jin S, White E (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10:51–64

    Article  PubMed  CAS  Google Scholar 

  18. Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nat Rev Cancer 7:961–967

    Article  PubMed  CAS  Google Scholar 

  19. Li M, Jiang X, Liu D, Na Y, Gao GF, Xi Z (2008) Autophagy protects LNCaP cells under androgen deprivation conditions. Autophagy 4:54–60

    PubMed  CAS  Google Scholar 

  20. Chhipa RR, Wu Y, Ip C (2011) AMPK-mediated autophagy is a survival mechanism in androgen-dependent prostate cancer cells subjected to androgen deprivation and hypoxia. Cell Signal 23:1466–1472

    Article  PubMed  CAS  Google Scholar 

  21. Fleming A, Noda T, Yoshimori T, Rubinsztein DC (2011) Chemical modulators of autophagy as biological probes and potential therapeutics. Nat Chem Biol 7:9–17

    Article  PubMed  CAS  Google Scholar 

  22. Bhutia SK, Das SK, Azab B, Dash R, Su ZZ, Lee SG, Dent P, Curiel DT, Sarkar D, Fisher PB (2011) Autophagy switches to apoptosis in prostate cancer cells infected with melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24). Autophagy 7:1076–1077

    Article  PubMed  CAS  Google Scholar 

  23. Parikh A, Childress C, Deitrick K, Lin Q, Rukstalis D, Yang W (2010) Statin-induced autophagy by inhibition of geranylgeranyl biosynthesis in prostate cancer PC3 cells. Prostate 70:971–981

    Article  PubMed  CAS  Google Scholar 

  24. Suh Y, Afaq F, Khan N, Johnson JJ, Khusro FH, Mukhtar H (2010) Fisetin induces autophagic cell death through suppression of mTOR signaling pathway in prostate cancer cells. Carcinogenesis 31:1424–1433

    Article  PubMed  CAS  Google Scholar 

  25. Giampietri C, Petrungaro S, Musumeci M, Coluccia P, Antonangeli F, De Cesaris P, Filippini A, Marano G, Ziparo E (2008) c-Flip overexpression reduces cardiac hypertrophy in response to pressure overload. J Hypertens 26:1008–1016

    Article  PubMed  CAS  Google Scholar 

  26. Giampietri C, Petrungaro S, Coluccia P, Antonangeli F, Giannakakis K, Faraggiana T, Filippini A, Cossu G, Ziparo E (2010) c-Flip overexpression affects satellite cell proliferation and promotes skeletal muscle aging. Cell Death Dis 1:e38

    Article  PubMed  CAS  Google Scholar 

  27. Ricote M, Garcia-Tunon I, Fraile B, Fernandez C, Aller P, Paniagua R, Royuela M (2006) P38 MAPK protects against TNF-alpha-provoked apoptosis in LNCaP prostatic cancer cells. Apoptosis 11:1969–1975

    Article  PubMed  CAS  Google Scholar 

  28. Colleran A, Ryan A, O’Gorman A, Mureau C, Liptrot C, Dockery P, Fearnhead H, Egan LJ (2011) Autophagosomal IkappaB alpha degradation plays a role in the long term control of tumor necrosis factor-alpha-induced nuclear factor-kappaB (NF-kappaB) activity. J Biol Chem 286:22886–22893

    Article  PubMed  CAS  Google Scholar 

  29. Harris J (2011) Autophagy and cytokines. Cytokine 56:140–144

    Article  PubMed  CAS  Google Scholar 

  30. Garg AK, Aggarwal BB (2002) Reactive oxygen intermediates in TNF signaling. Mol Immunol 39:509–517

    Article  PubMed  CAS  Google Scholar 

  31. Wang L, Azad N, Kongkaneramit L, Chen F, Lu Y, Jiang BH, Rojanasakul Y (2008) The Fas death signaling pathway connecting reactive oxygen species generation and FLICE inhibitory protein down-regulation. J Immunol 180:3072–3080

    PubMed  CAS  Google Scholar 

  32. Chang L, Kamata H, Solinas G, Luo JL, Maeda S, Venuprasad K, Liu YC, Karin M (2006) The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover. Cell 124:601–613

    Article  PubMed  CAS  Google Scholar 

  33. Bhattacharyya A, Pathak S, Basak C, Law S, Kundu M, Basu J (2003) Execution of macrophage apoptosis by Mycobacterium avium through apoptosis signal-regulating kinase 1/p38 mitogen-activated protein kinase signaling and caspase 8 activation. J Biol Chem 278:26517–26525

    Article  PubMed  CAS  Google Scholar 

  34. Kim JH, Jeong SJ, Kwon TR, Yun SM, Jung JH, Kim M, Lee HJ, Lee MH, Ko SG, Chen CY, Kim SH (2011) Cryptotanshinone enhances TNF-alpha-induced apoptosis in chronic myeloid leukemia KBM-5 cells. Apoptosis 16:696–707

    Article  PubMed  CAS  Google Scholar 

  35. Zhang Z, Teruya K, Eto H, Shirahata S (2011) Fucoidan extract induces apoptosis in MCF-7 cells via a mechanism involving the ROS-dependent JNK activation and mitochondria-mediated pathways. PLoS ONE 6:e27441

    Article  PubMed  CAS  Google Scholar 

  36. Yang JY, Hung MC (2011) Deciphering the role of forkhead transcription factors in cancer therapy. Curr Drug Targets 12:1284–1290

    Article  PubMed  CAS  Google Scholar 

  37. Chen Q, Ganapathy S, Singh KP, Shankar S, Srivastava RK (2010) Resveratrol induces growth arrest and apoptosis through activation of FOXO transcription factors in prostate cancer cells. PLoS ONE 5:e15288

    Article  PubMed  CAS  Google Scholar 

  38. Sakoe Y, Sakoe K, Kirito K, Ozawa K, Komatsu N (2010) FOXO3A as a key molecule for all-trans retinoic acid-induced granulocytic differentiation and apoptosis in acute promyelocytic leukemia. Blood 115:3787–3795

    Article  PubMed  CAS  Google Scholar 

  39. Abedin MJ, Wang D, McDonnell MA, Lehmann U, Kelekar A (2007) Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ 14:500–510

    Article  PubMed  CAS  Google Scholar 

  40. Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Metivier D, Meley D, Souquere S, Yoshimori T, Pierron G, Codogno P, Kroemer G (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25:1025–1040

    Article  PubMed  CAS  Google Scholar 

  41. Hippert MM, O’Toole PS, Thorburn A (2006) Autophagy in cancer: good, bad, or both? Cancer Res 66:9349–9351

    Article  PubMed  CAS  Google Scholar 

  42. Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S (2004) Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 11:448–457

    Article  PubMed  CAS  Google Scholar 

  43. Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T, Thompson CB (2005) Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120:237–248

    Article  PubMed  CAS  Google Scholar 

  44. Kang R, Livesey KM, Zeh HJ III, Lotze MT, Tang D (2011) HMGB1 as an autophagy sensor in oxidative stress. Autophagy 7:904–906

    Article  PubMed  Google Scholar 

  45. Balkwill F (2009) Tumour necrosis factor and cancer. Nat Rev Cancer 9:361–371

    Article  PubMed  CAS  Google Scholar 

  46. Saleem A, Dvorzhinski D, Santanam U, Mathew R, Bray K, Stein M, White E, Dipaola RS (2012) Effect of dual inhibition of apoptosis and autophagy in prostate cancer. Prostate 72:1374–1381

    Article  PubMed  CAS  Google Scholar 

  47. Han J, Hou W, Goldstein LA, Lu C, Stolz DB, Yin XM, Rabinowich H (2008) Involvement of protective autophagy in TRAIL resistance of apoptosis-defective tumor cells. J Biol Chem 283:19665–19677

    Article  PubMed  CAS  Google Scholar 

  48. Giampietri C, Petrungaro S, Coluccia P, D’Alessio A, Starace D, Riccioli A, Padula F, Srinivasula SM, Alnemri E, Palombi F, Filippini A, Ziparo E, De Cesaris P (2003) FLIP is expressed in mouse testis and protects germ cells from apoptosis. Cell Death Differ 10:175–184

    Article  PubMed  CAS  Google Scholar 

  49. Giampietri C, Petrungaro S, Klinger FG, Coluccia P, Paone A, Vivarelli E, Filippini A, De Cesaris P, De Felici M, Ziparo E (2005) c-Flip expression and function in fetal mouse gonocytes. Faseb J 19:124

    Google Scholar 

  50. Giampietri C, Petrungaro S, Coluccia P, Antonangeli F, Paone A, Padula F, De Cesaris P, Ziparo E, Filippini A (2006) c-Flip(L) is expressed in undifferentiated mouse male germ cells. FEBS Lett 580:6109–6114

    Article  PubMed  CAS  Google Scholar 

  51. Amran D, Sanchez Y, Fernandez C, Ramos AM, de Blas E, Breard J, Calle C, Aller P (2007) Arsenic trioxide sensitizes promonocytic leukemia cells to TNFalpha-induced apoptosis via p38-MAPK-regulated activation of both receptor-mediated and mitochondrial pathways. Biochim Biophys Acta 1773:1653–1663

    Article  PubMed  CAS  Google Scholar 

  52. Bajbouj K, Poehlmann A, Kuester D, Drewes T, Haase K, Hartig R, Teller A, Kliche S, Walluscheck D, Ivanovska J, Chakilam S, Ulitzsch A, Bommhardt U, Leverkus M, Roessner A, Schneider-Stock R (2009) Identification of phosphorylated p38 as a novel DAPK-interacting partner during TNFalpha-induced apoptosis in colorectal tumor cells. Am J Pathol 175:557–570

    Article  PubMed  CAS  Google Scholar 

  53. Dolado I, Swat A, Ajenjo N, De Vita G, Cuadrado A, Nebreda AR (2007) p38alpha MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell 11:191–205

    Article  PubMed  CAS  Google Scholar 

  54. Panner A, Crane CA, Weng C, Feletti A, Parsa AT, Pieper RO (2009) A novel PTEN-dependent link to ubiquitination controls FLIPS stability and TRAIL sensitivity in glioblastoma multiforme. Cancer Res 69:7911–7916

    Article  PubMed  CAS  Google Scholar 

  55. Perez D, White E (2003) E1A sensitizes cells to tumor necrosis factor alpha by downregulating c-FLIP S. J Virol 77:2651–2662

    Article  PubMed  CAS  Google Scholar 

  56. Zhu K, Dunner K Jr, McConkey DJ (2010) Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells. Oncogene 29:451–462

    Article  PubMed  CAS  Google Scholar 

  57. Sintich SM, Steinberg J, Kozlowski JM, Lee C, Pruden S, Sayeed S, Sensibar JA (1999) Cytotoxic sensitivity to tumor necrosis factor-alpha in PC3 and LNCaP prostatic cancer cells is regulated by extracellular levels of SGP-2 (clusterin). Prostate 39:87–93

    Article  PubMed  CAS  Google Scholar 

  58. Anderson MJ, Viars CS, Czekay S, Cavenee WK, Arden KC (1998) Cloning and characterization of three human forkhead genes that comprise an FKHR-like gene subfamily. Genomics 47:187–199

    Article  PubMed  CAS  Google Scholar 

  59. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    Article  PubMed  CAS  Google Scholar 

  60. Wang Y, Mikhailova M, Bose S, Pan CX, deVere White RW, Ghosh PM (2008) Regulation of androgen receptor transcriptional activity by rapamycin in prostate cancer cell proliferation and survival. Oncogene 27:7106–7117

    Article  PubMed  CAS  Google Scholar 

  61. Lim EJ, Park DW, Lee JG, Lee CH, Bae YS, Hwang YC, Jeong JW, Chin BR, Baek SH (2010) Toll-like receptor 9-mediated inhibition of apoptosis occurs through suppression of FoxO3a activity and induction of FLIP expression. Exp Mol Med 42:712–720

    Article  PubMed  CAS  Google Scholar 

  62. Lin MF, Meng TC, Rao PS, Chang C, Schonthal AH, Lin FF (1998) Expression of human prostatic acid phosphatase correlates with androgen-stimulated cell proliferation in prostate cancer cell lines. J Biol Chem 273:5939–5947

    Article  PubMed  CAS  Google Scholar 

  63. Lynch RL, Konicek BW, McNulty AM, Hanna KR, Lewis JE, Neubauer BL, Graff JR (2005) The progression of LNCaP human prostate cancer cells to androgen independence involves decreased FOXO3a expression and reduced p27KIP1 promoter transactivation. Mol Cancer Res 3:163–169

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Francesco Facchiano, Dr Stefania Rossi (Istituto Superiore di Sanità, Rome, Italy) and Dr Pierpaolo Coluccia (Sapienza University, Rome, Italy) for technical support. Fondazione Roma (http://www.fondazioneroma.it) and International FIRB (Fondo per gli Investimenti della Ricerca di Base Internazionale) (http://www.istitutopasteur.it) co-funded this work. The Authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Giampietri.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giampietri, C., Petrungaro, S., Padula, F. et al. Autophagy modulators sensitize prostate epithelial cancer cell lines to TNF-alpha-dependent apoptosis. Apoptosis 17, 1210–1222 (2012). https://doi.org/10.1007/s10495-012-0752-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-012-0752-z

Keywords

Navigation