Skip to main content

Advertisement

Log in

TSSC3 overexpression reduces stemness and induces apoptosis of osteosarcoma tumor-initiating cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Osteosarcoma (OS) is the most common primary bone tumor in children and adolescents, typically presenting with poor prognosis. Recent studies suggested that tumor initiating cells (T-ICs) drive tumor formation and relapse or metastasis and are relatively resistant to cell death induced by conventional chemo- and radiotherapies. Therefore, the poor prognosis of OS appears to be associated with T-ICs. Here, we enriched T-ICs in OS cell lines and evaluated whether the imprinted gene TSSC3 (tumor-suppressing STF cDNA 3) associated with apoptosis could affect T-ICs in OS. Sarcosphere selection and serial clone-forming unit assays were successfully used to enrich T-ICs from OS cell lines. Enrichment of T-ICs from a malignantly transformed hFOB1.19 osteoblast cell line (MThFOB1.19) indicated that OS T-ICs could originate from differentiated cells, and most of these MThFOB1.19 cells showed stem-like features. TSSC3 was expressed at a low level in T-ICs, while overexpression of TSSC3 could efficiently downregulate the expression of stem cell markers Nanog, Oct4 and Sox2 in T-ICs and decrease the clone formation rate, as well as downregulate tumorigenesis in MThFOB1.19 cells, supporting a suppressive role for TSSC3 in OS T-ICs. Furthermore, overexpression of TSSC3 was found to induce apoptosis of OS T-ICs through increasing cleaved caspase-3 (active form), increasing the release of Cyt c and decreasing pro-caspase-9 (pro-enzyme form), as well as disruption of the mitochondrial membrane potential (ΔΨ). Taken together, our findings provide preliminary evidence that TSSC3 inhibits OS tumorigenicity through reducing stemness and promoting apoptosis of T-ICs. Thus, targeting TSSC3 may be a promising approach to suppressing tumorigenicity in OS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ΔΨ:

Membrane potential (mitochondrial)

DMEM:

Dulbecco’s minimal essential medium

FBS:

Fetal bovine serum

OS:

Osteosarcoma

PI:

Propidium iodide

T-ICs:

Tumor initiating cells

TSCs:

Tumor stem cells

TSSC3:

Tumor-suppressing STF cDNA 3

References

  1. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737

    Article  PubMed  CAS  Google Scholar 

  2. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988. doi:10.1073/pnas.0530291100

    Article  PubMed  CAS  Google Scholar 

  3. Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3(12):895–902. doi:10.1038/nrc1232

    Article  PubMed  CAS  Google Scholar 

  4. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828

    PubMed  CAS  Google Scholar 

  5. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111. doi:10.1038/35102167

    Article  PubMed  CAS  Google Scholar 

  6. Davies EJ, Marsh V, Clarke AR (2011) Origin and maintenance of the intestinal cancer stem cell. Mol Carcinog 50(4):254–263. doi:10.1002/mc.20631

    Article  PubMed  CAS  Google Scholar 

  7. Tang N, Song WX, Luo J, Haydon RC, He TC (2008) Osteosarcoma development and stem cell differentiation. Clin Orthop Relat Res 466(9):2114–2130. doi:10.1007/s11999-008-0335-z

    Article  PubMed  Google Scholar 

  8. Signore M, Ricci-Vitiani L, De Maria R (2011) Targeting apoptosis pathways in cancer stem cells. Cancer Lett. doi: 10.1016/j.canlet.2011.01.013

  9. Gibbs CP, Kukekov VG, Reith JD, Tchigrinova O, Suslov ON, Scott EW, Ghivizzani SC, Ignatova TN, Steindler DA (2005) Stem-like cells in bone sarcomas: implications for tumorigenesis. Neoplasia 7(11):967–976

    Article  PubMed  CAS  Google Scholar 

  10. Tirino V, Desiderio V, d’Aquino R, De Francesco F, Pirozzi G, Graziano A, Galderisi U, Cavaliere C, De Rosa A, Papaccio G, Giordano A (2008) Detection and characterization of CD133+ cancer stem cells in human solid tumours. PLoS ONE 3(10):e3469. doi:10.1371/journal.pone.0003469

    Article  PubMed  Google Scholar 

  11. Veselska R, Hermanova M, Loja T, Chlapek P, Zambo I, Vesely K, Zitterbart K, Sterba J (2008) Nestin expression in osteosarcomas and derivation of nestin/CD133 positive osteosarcoma cell lines. BMC Cancer 8:300. doi:10.1186/1471-2407-8-300

    Article  PubMed  Google Scholar 

  12. Wilson H, Huelsmeyer M, Chun R, Young KM, Friedrichs K, Argyle DJ (2008) Isolation and characterisation of cancer stem cells from canine osteosarcoma. Vet J 175(1):69–75. doi:10.1016/j.tvjl.2007.07.025

    Article  PubMed  CAS  Google Scholar 

  13. Di Fiore R, Santulli A, Ferrante RD, Giuliano M, De Blasio A, Messina C, Pirozzi G, Tirino V, Tesoriere G, Vento R (2009) Identification and expansion of human osteosarcoma-cancer-stem cells by long-term 3-aminobenzamide treatment. J Cell Physiol 219(2):301–313. doi:10.1002/jcp21667

    Article  PubMed  Google Scholar 

  14. Cheng L, Sung MT, Cossu-Rocca P, Jones TD, MacLennan GT, De Jong J, Lopez-Beltran A, Montironi R, Looijenga LH (2007) OCT4: biological functions and clinical applications as a marker of germ cell neoplasia. J Pathol 211(1):1–9. doi:10.1002/path.2105

    Article  PubMed  CAS  Google Scholar 

  15. Tang QL, Zhao ZQ, Li JC, Liang Y, Yin JQ, Zou CY, Xie XB, Zeng YX, Shen JN, Kang T, Wang J (2011) Salinomycin inhibits osteosarcoma by targeting its tumor stem cells. Cancer Lett 311(1):113–121. doi: 10.1016/j.canlet.2011.07.016

    Google Scholar 

  16. Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S, Bernard L, Viale G, Pelicci PG, Di Fiore PP (2010) Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140(1):62–73. doi:10.1016/j.cell.2009.12.007

    Article  PubMed  CAS  Google Scholar 

  17. Li Y, Meng G, Guo QN (2008) Changes in genomic imprinting and gene expression associated with transformation in a model of human osteosarcoma. Exp Mol Pathol 84(3):234–239. doi:10.1016/j.yexmp.200803013

    Article  PubMed  CAS  Google Scholar 

  18. Lee MP, Feinberg AP (1998) Genomic imprinting of a human apoptosis gene homologue, TSSC3. Cancer Res 58(5):1052–1056

    PubMed  CAS  Google Scholar 

  19. Dai H, Huang Y, Li Y, Meng G, Wang Y, Guo QN (2012) TSSC3 overexpression associates with growth inhibition, apoptosis induction and enhances chemotherapeutic effects in human osteosarcoma. Carcinogenesis 33(1):30–40. doi:10.1093/carcin/bgr232

    Article  PubMed  CAS  Google Scholar 

  20. Silva J, Nichols J, Theunissen TW, Guo G, van Oosten AL, Barrandon O, Wray J, Yamanaka S, Chambers I, Smith A (2009) Nanog is the gateway to the pluripotent ground state. Cell 138(4):722–737. doi:10.1016/j.cell.2009.07.039

    Article  PubMed  CAS  Google Scholar 

  21. Zheng X, Shen G, Yang X, Liu W (2007) Most C6 cells are cancer stem cells: evidence from clonal and population analyses. Cancer Res 67(8):3691–3697. doi:10.1158/0008-5472.can-06-3912

    Article  PubMed  CAS  Google Scholar 

  22. Meissner A, Wernig M, Jaenisch R (2007) Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 25(10):1177–1181. doi:10.1038/nbt1335

    Article  PubMed  CAS  Google Scholar 

  23. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317. doi:10.1038/nature05934

    Article  PubMed  CAS  Google Scholar 

  24. Pei D (2009) Regulation of pluripotency and reprogramming by transcription factors. J Biol Chem 284(6):3365–3369. doi:10.1074/jbc.R800063200

    Article  PubMed  CAS  Google Scholar 

  25. Su X, Zheng X, Ni J (2009) Lanthanum citrate induces anoikis of Hela cells. Cancer Lett 285(2):200–209. doi:10.1016/j.canlet.2009.05.018

    Article  PubMed  CAS  Google Scholar 

  26. Zhu XJ, Shi Y, Peng J, Guo CS, Shan NN, Qin P, Ji XB, Hou M (2009) The effects of BAFF and BAFF-R-Fc fusion protein in immune thrombocytopenia. Blood 114(26):5362–5367. doi:10.1182/blood-2009-05-217513

    Article  PubMed  CAS  Google Scholar 

  27. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8(10):755–768. doi:10.1038/nrc2499

    Article  PubMed  CAS  Google Scholar 

  28. Moon JH, Kwon S, Jun EK, Kim A, Whang KY, Kim H, Oh S, Yoon BS, You S (2011) Nanog-induced dedifferentiation of p53-deficient mouse astrocytes into brain cancer stem-like cells. Biochem Biophys Res Commun 412(1):175–181. doi:10.1016/j.bbrc.2011.07.070

    PubMed  CAS  Google Scholar 

  29. Scaffidi P, Misteli T (2011) In vitro generation of human cells with cancer stem cell properties. Nat Cell Biol 13(9):1051–1061. doi:10.1038/ncb2308

    Article  PubMed  CAS  Google Scholar 

  30. Trosko JE (2009) Review paper: cancer stem cells and cancer nonstem cells: from adult stem cells or from reprogramming of differentiated somatic cells. Vet Pathol 46(2):176–193. doi:10.1354/vp.462176

    PubMed  CAS  Google Scholar 

  31. Li F (2009) Every single cell clones from cancer cell lines growing tumors in vivo may not invalidate the cancer stem cell concept. Mol Cells 27(4):491–492. doi:10.1007/s10059-009-0056-5

    Article  PubMed  CAS  Google Scholar 

  32. Kern SE, Shibata D (2007) The fuzzy math of solid tumor stem cells: a perspective. Cancer Res 67(19):8985–8988. doi:10.1158/0008-5472.can-07-1971

    Article  PubMed  CAS  Google Scholar 

  33. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumour formation by single human melanoma cells. Nature 456(7222):593–598. doi:10.1038/nature07567

    Article  PubMed  CAS  Google Scholar 

  34. Oliver TG, Wechsler-Reya RJ (2004) Getting at the root and stem of brain tumors. Neuron 42(6):885–888. doi:10.1016/j.neuron.2004.06.011

    Article  PubMed  CAS  Google Scholar 

  35. Hu RJ, Lee MP, Connors TD, Johnson LA, Burn TC, Su K, Landes GM, Feinberg AP (1997) A 2.5-Mb transcript map of a tumor-suppressing subchromosomal transferable fragment from 11p15.5, and isolation and sequence analysis of three novel genes. Genomics 46(1):9–17. doi:10.1006/geno.1997.4981

    Article  PubMed  CAS  Google Scholar 

  36. Qian N, Frank D, O’Keefe D, Dao D, Zhao L, Yuan L, Wang Q, Keating M, Walsh C, Tycko B (1997) The IPL gene on chromosome 11p15.5 is imprinted in humans and mice and is similar to TDAG51, implicated in Fas expression and apoptosis. Hum Mol Genet 6(12):2021–2029

    Article  PubMed  CAS  Google Scholar 

  37. Keane MM, Ettenberg SA, Lowrey GA, Russell EK, Lipkowitz S (1996) Fas expression and function in normal and malignant breast cell lines. Cancer Res 56(20):4791–4798

    PubMed  CAS  Google Scholar 

  38. Nagai MA, Fregnani JH, Netto MM, Brentani MM, Soares FA (2007) Down-regulation of PHLDA1 gene expression is associated with breast cancer progression. Breast Cancer Res Treat 106(1):49–56. doi:10.1007/s10549-006-9475-6

    Article  PubMed  CAS  Google Scholar 

  39. Muller S, van den Boom D, Zirkel D, Koster H, Berthold F, Schwab M, Westphal M, Zumkeller W (2000) Retention of imprinting of the human apoptosis-related gene TSSC3 in human brain tumors. Hum Mol Genet 9(5):757–763

    Article  PubMed  CAS  Google Scholar 

  40. Schwienbacher C, Angioni A, Scelfo R, Veronese A, Calin GA, Massazza G, Hatada I, Barbanti-Brodano G, Negrini M (2000) Abnormal RNA expression of 11p15 imprinted genes and kidney developmental genes in Wilms’ tumor. Cancer Res 60(6):1521–1525

    PubMed  CAS  Google Scholar 

  41. Frank NY, Schatton T, Frank MH (2010) The therapeutic promise of the cancer stem cell concept. J Clin Invest 120(1):41–50. doi:10.1172/jci41004

    Article  PubMed  CAS  Google Scholar 

  42. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM (2006) Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66(19):9339–9344. doi:10.1158/0008-5472.can-06-3126

    Article  PubMed  CAS  Google Scholar 

  43. Peng S, Maihle NJ, Huang Y (2010) Pluripotency factors Lin28 and Oct4 identify a sub-population of stem cell-like cells in ovarian cancer. Oncogene 29(14):2153–2159. doi:10.1038/onc.2009.500

    Article  PubMed  CAS  Google Scholar 

  44. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113(5):631–642

    Article  PubMed  CAS  Google Scholar 

  45. Sell S (2004) Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol 51(1):1–28. doi:10.1016/j.critrevonc.2004.04.007

    Article  PubMed  Google Scholar 

  46. Hu T, Liu S, Breiter DR, Wang F, Tang Y, Sun S (2008) Octamer 4 small interfering RNA results in cancer stem cell-like cell apoptosis. Cancer Res 68(16):6533–6540. doi:10.1158/0008-5472.can-07-6642

    Article  PubMed  CAS  Google Scholar 

  47. Chang CC, Shieh GS, Wu P, Lin CC, Shiau AL, Wu CL (2008) Oct-3/4 expression reflects tumor progression and regulates motility of bladder cancer cells. Cancer Res 68(15):6281–6291. doi:10.1158/0008-5472.can-08-0094

    Article  PubMed  CAS  Google Scholar 

  48. Jia X, Li X, Xu Y, Zhang S, Mou W, Liu Y, Lv D, Liu CH, Tan X, Xiang R, Li N (2011) SOX2 promotes tumorigenesis and increases the anti-apoptotic property of human prostate cancer cell. J Mol Cell Biol 3(4):230–238. doi:10.1093/jmcb/mjr002

    Article  PubMed  CAS  Google Scholar 

  49. Mimeault M, Batra SK (2006) Concise review: recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells 24(11):2319–2345. doi:10.1634/stemcells.2006-0066

    Article  PubMed  CAS  Google Scholar 

  50. Mimeault M, Hauke R, Mehta PP, Batra SK (2007) Recent advances in cancer stem/progenitor cell research: therapeutic implications for overcoming resistance to the most aggressive cancers. J Cell Mol Med 11(5):981–1011. doi:10.1111/j.1582-4934.2007.00088.x

    Article  PubMed  CAS  Google Scholar 

  51. Simpson CD, Anyiwe K, Schimmer AD (2008) Anoikis resistance and tumor metastasis. Cancer Lett 272(2):177–185. doi:10.1016/j.canlet.2008.05.029

    Article  PubMed  CAS  Google Scholar 

  52. Mawji IA, Simpson CD, Hurren R, Gronda M, Williams MA, Filmus J, Jonkman J, Da Costa RS, Wilson BC, Thomas MP, Reed JC, Glinsky GV, Schimmer AD (2007) Critical role for Fas-associated death domain-like interleukin-1-converting enzyme-like inhibitory protein in anoikis resistance and distant tumor formation. J Natl Cancer Inst 99(10):811–822. doi:10.1093/jnci/djk182

    Article  PubMed  CAS  Google Scholar 

  53. Green DR (2010) Cancer: a wolf in wolf’s clothing. Nature 465(7297):433. doi:10.1038/465433a

    Article  PubMed  CAS  Google Scholar 

  54. Chen L, Park SM, Tumanov AV, Hau A, Sawada K, Feig C, Turner JR, Fu YX, Romero IL, Lengyel E, Peter ME (2010) CD95 promotes tumour growth. Nature 465(7297):492–496. doi:10.1038/nature09075

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Basic Research Program of China (973 Program, No. 2010CB529402) and the National Natural Science Foundation of China (No. 30971139 and No. 81172554). We thank Professor Cheng Qian (Institute for Pathology and Cancer Research, Southwest Hospital, Chongqing, China) for kindly providing the GeneSwitch™ system (Invitrogen, USA).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao-Nan Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Dai, H. & Guo, QN. TSSC3 overexpression reduces stemness and induces apoptosis of osteosarcoma tumor-initiating cells. Apoptosis 17, 749–761 (2012). https://doi.org/10.1007/s10495-012-0734-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-012-0734-1

Keywords

Navigation