Skip to main content
Log in

The flavonolignan silibinin potentiates TRAIL-induced apoptosis in human colon adenocarcinoma and in derived TRAIL-resistant metastatic cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Silibinin, a flavonolignan, is the major active component of the milk thistle plant (Silybum marianum) and has been shown to possess anti-neoplastic properties. TNF-related apoptosis-inducing ligand (TRAIL) is a promising anti-cancer agent which selectively induces apoptosis in cancer cells. However, resistance to TRAIL-induced apoptosis is an important and frequent problem in cancer treatment. In this study, we investigated the effect of silibinin and TRAIL in an in vitro model of human colon cancer progression, consisting of primary colon tumor cells (SW480) and their derived TRAIL-resistant metastatic cells (SW620). We showed by flow cytometry that silibinin and TRAIL synergistically induced cell death in the two cell lines. Up-regulation of death receptor 4 (DR4) and DR5 by silibinin was shown by RT-PCR and by flow cytometry. Human recombinant DR5/Fc chimera protein that has a dominant-negative effect by competing with the endogenous receptors abrogated cell death induced by silibinin and TRAIL, demonstrating the activation of the death receptor pathway. Synergistic activation of caspase-3, -8, and -9 by silibinin and TRAIL was shown by colorimetric assays. When caspase inhibitors were used, cell death was blocked. Furthermore, silibinin and TRAIL potentiated activation of the mitochondrial apoptotic pathway and down-regulated the anti-apoptotic proteins Mcl-1 and XIAP. The involvement of XIAP in sensitization of the two cell lines to TRAIL was demonstrated using the XIAP inhibitor embelin. These findings demonstrate the synergistic action of silibinin and TRAIL, suggesting chemopreventive and therapeutic potential which should be further explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel R, Ward E, Brawley O, Jemal A (2011) Cancer statistics, 2011. CA A Cancer J Clin 61:212–236. doi:10.3322/caac.20121

  2. Ferlay J, Parkin DM, Steliarova-Foucher E (2010) Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer 46:765–781. doi:10.1016/j.ejca.2009.12.014

    Article  CAS  PubMed  Google Scholar 

  3. McRee AJ, Goldberg RM (2011) Optimal management of metastatic colorectal cancer: current status. Drugs 71:869–884. doi:10.2165/11591770-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  4. Davies JM, Goldberg RM (2011) Treatment of metastatic colorectal cancer. Semin Oncol 38:552–560. doi:10.1053/j.seminoncol.2011.05.009

    Article  CAS  PubMed  Google Scholar 

  5. Gonzalvez F, Ashkenazi A (2010) New insights into apoptosis signaling by Apo2L/TRAIL. Oncogene 29:4752–4765. doi:10.1038/onc.2010.221

    Article  CAS  PubMed  Google Scholar 

  6. Jacquemin G, Shirley S, Micheau O (2010) Combining naturally occurring polyphenols with TNF-related apoptosis-inducing ligand: a promising approach to kill resistant cancer cells? Cell Mol Life Sci 67:3115–3130. doi:10.1007/s00018-010-0407-6

    Article  CAS  PubMed  Google Scholar 

  7. Zhang L, Fang B (2005) Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther 12:228–237. doi:10.1038/sj.cgt.7700792

    Article  CAS  PubMed  Google Scholar 

  8. Mellier G, Huang S, Shenoy K, Pervaiz S (2010) TRAILing death in cancer. Mol Aspects Med 31:93–112. doi:10.1016/j.mam.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  9. Maldonado-Celis ME, Bousserouel S, Gossé F, Minker C, Lobstein A, Raul F (2009) Differential induction of apoptosis by apple procyanidins in TRAIL-sensitive human colon tumor cells and derived TRAIL-resistant metastatic cells. J Cancer Mol 5:21–30. http://www.mupnet.com/JOCM%205(1)%2021.htm

    Google Scholar 

  10. Rushworth SA, Micheau O (2009) Molecular crosstalk between TRAIL and natural antioxidants in the treatment of cancer. Br J Pharmacol 157:1186–1188. doi:10.1111/j.1476-5381.2009.00266.x

    Article  CAS  PubMed  Google Scholar 

  11. Thorburn A, Behbakht K, Ford H (2008) TRAIL receptor-targeted therapeutics: resistance mechanisms and strategies to avoid them. Drug Resist Updat 11:17–24. doi:10.1016/j.drup.2008.02.001

    Article  CAS  PubMed  Google Scholar 

  12. Gazák R, Walterová D, Kren V (2007) Silybin and silymarin: new and emerging applications in medicine. Curr Med Chem 14:315–338

    Article  PubMed  Google Scholar 

  13. (2011) Toxicology and carcinogenesis studies of milk thistle extract (CAS No. 84604-20-6) in F344/N rats and B6C3F1 mice (Feed Studies). Natl Toxicol Program Tech Rep Ser 1–177

  14. Singh RP, Agarwal R (2005) Mechanisms and preclinical efficacy of silibinin in preventing skin cancer. Eur J Cancer 41:1969–1979. doi:10.1016/j.ejca.2005.03.033

    Article  CAS  PubMed  Google Scholar 

  15. Singh RP, Agarwal R (2006) Prostate cancer chemoprevention by silibinin: bench to bedside. Mol Carcinog 45:436–442. doi:10.1002/mc.20223

    Article  CAS  PubMed  Google Scholar 

  16. Tyagi A et al (2009) Growth inhibition and regression of lung tumors by silibinin: modulation of angiogenesis by macrophage-associated cytokines and nuclear factor-kappaB and signal transducers and activators of transcription 3. Cancer Prev Res (Phila) 2:74–83. doi:10.1158/1940-6207.CAPR-08-0095

    Article  CAS  Google Scholar 

  17. Kauntz H, Bousserouel S, Gossé F, Raul F (2011) Silibinin triggers apoptotic signaling pathways and autophagic survival response in human colon adenocarcinoma cells and their derived metastatic cells. Apoptosis 16:1042–1053. doi:10.1007/s10495-011-0631-z

    Article  CAS  PubMed  Google Scholar 

  18. Velmurugan B et al (2010) Silibinin exerts sustained growth suppressive effect against human colon carcinoma SW480 xenograft by targeting multiple signaling molecules. Pharm Res 27:2085–2097. doi:10.1007/s11095-010-0207-6

    Article  CAS  PubMed  Google Scholar 

  19. Bellail AC, Qi L, Mulligan P, Chhabra V, Hao C (2009) TRAIL agonists on clinical trials for cancer therapy: the promises and the challenges. Rev Recent Clin Trials 4:34–41

    Article  CAS  PubMed  Google Scholar 

  20. Flaig TW et al (2007) A phase I and pharmacokinetic study of silybin-phytosome in prostate cancer patients. Invest New Drugs 25:139–146. doi:10.1007/s10637-006-9019-2

    Article  CAS  PubMed  Google Scholar 

  21. Son Y-G et al (2007) Silibinin sensitizes human glioma cells to TRAIL-mediated apoptosis via DR5 up-regulation and down-regulation of c-FLIP and survivin. Cancer Res 67:8274–8284. doi:10.1158/0008-5472.CAN-07-0407

    Article  Google Scholar 

  22. Hewitt RE et al (2000) Validation of a model of colon cancer progression. J Pathol 192:446–454. doi:10.1002/1096-9896(2000)9999:9999<:AID-PATH775>3.0.CO;2-K

    Article  CAS  PubMed  Google Scholar 

  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  24. Novo D, Perlmutter NG, Hunt RH, Shapiro HM (1999) Accurate flow cytometric membrane potential measurement in bacteria using diethyloxacarbocyanine and a ratiometric technique. Cytometry 35:55–63

    Article  CAS  PubMed  Google Scholar 

  25. Fischer B et al (2005) Fast neutrons-induced apoptosis is Fas-independent in lymphoblastoid cells. Biochem Biophys Res Commun 334:533–542. doi:10.1016/j.bbrc.2005.06.125

    Article  CAS  PubMed  Google Scholar 

  26. Riccardi C, Nicoletti I (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 1:1458–1461. doi:10.1038/nprot.2006.238

    Article  CAS  PubMed  Google Scholar 

  27. Dolloff NG et al. (2011) Off-target lapatinib activity sensitizes colon cancer cells through TRAIL death receptor up-regulation. Sci Transl Med 3:86ra50. doi:10.1126/scitranslmed.3001384

  28. Nikolovska-Coleska Z et al (2004) Discovery of embelin as a cell-permeable, small-molecular weight inhibitor of XIAP through structure-based computational screening of a traditional herbal medicine three-dimensional structure database. J Med Chem 47:2430–2440. doi:10.1021/jm030420+

    Article  CAS  PubMed  Google Scholar 

  29. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  30. Fesik SW (2005) Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 5:876–885. doi:10.1038/nrc1736

    Article  CAS  PubMed  Google Scholar 

  31. Wang S (2010) TRAIL: a sword for killing tumors. Curr Med Chem 17:3309–3317

    CAS  PubMed  Google Scholar 

  32. Lawrence D et al (2001) Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat Med 7:383–385. doi:10.1038/86397

    Article  CAS  PubMed  Google Scholar 

  33. Agarwal C et al (2003) Silibinin upregulates the expression of cyclin-dependent kinase inhibitors and causes cell cycle arrest and apoptosis in human colon carcinoma HT-29 cells. Oncogene 22:8271–8282. doi:10.1038/sj.onc.1207158

    Article  CAS  PubMed  Google Scholar 

  34. Hoh C et al (2006) Pilot study of oral silibinin, a putative chemopreventive agent, in colorectal cancer patients: silibinin levels in plasma, colorectum, and liver and their pharmacodynamic consequences. Clin Cancer Res 12:2944–2950. doi:10.1158/1078-0432.CCR-05-2724

    Article  CAS  PubMed  Google Scholar 

  35. García-Maceira P, Mateo J (2009) Silibinin inhibits hypoxia-inducible factor-1alpha and mTOR/p70S6K/4E-BP1 signalling pathway in human cervical and hepatoma cancer cells: implications for anticancer therapy. Oncogene 28:313–324. doi:10.1038/onc.2008.398

    Article  PubMed  Google Scholar 

  36. Lee JT, Lee T-J, Kim C-H, Kim N-S, Kwon TK (2009) Over-expression of Reticulon 3 (RTN3) enhances TRAIL-mediated apoptosis via up-regulation of death receptor 5 (DR5) and down-regulation of c-FLIP. Cancer Lett 279:185–192. doi:10.1016/j.canlet.2009.01.035

    Article  CAS  PubMed  Google Scholar 

  37. Kelley RF et al (2005) Receptor-selective mutants of apoptosis-inducing ligand 2/tumor necrosis factor-related apoptosis-inducing ligand reveal a greater contribution of death receptor (DR) 5 than DR4 to apoptosis signaling. J Biol Chem 280:2205–2212. doi:10.1074/jbc.M410660200

    Article  CAS  PubMed  Google Scholar 

  38. Horinaka M et al (2006) The dietary flavonoid apigenin sensitizes malignant tumor cells to tumor necrosis factor-related apoptosis-inducing ligand. Mol Cancer Ther 5:945–951. doi:10.1158/1535-7163.MCT-05-0431

    Article  CAS  PubMed  Google Scholar 

  39. Horinaka M et al (2005) The combination of TRAIL and luteolin enhances apoptosis in human cervical cancer HeLa cells. Biochem Biophys Res Commun 333:833–838. doi:10.1016/j.bbrc.2005.05.179

    Article  CAS  PubMed  Google Scholar 

  40. Hasegawa H et al (2006) Dihydroflavonol BB-1, an extract of natural plant Blumea balsamifera, abrogates TRAIL resistance in leukemia cells. Blood 107:679–688. doi:10.1182/blood-2005-05-1982

    Article  CAS  PubMed  Google Scholar 

  41. Kim K, Fisher MJ, Xu SQ, el-Deiry WS (2000) Molecular determinants of response to TRAIL in killing of normal and cancer cells. Clin Cancer Res 6:335–346

    CAS  PubMed  Google Scholar 

  42. Milhas D et al (2005) Caspase-10 triggers bid cleavage and caspase cascade activation in FasL-induced apoptosis. J Biol Chem 280:19836–19842. doi:10.1074/jbc.M414358200

    Article  CAS  PubMed  Google Scholar 

  43. Fulda S, Debatin K-M (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25:4798–4811. doi:10.1038/sj.onc.1209608

    Article  CAS  PubMed  Google Scholar 

  44. Kim S-H, Ricci MS, El-Deiry WS (2008) Mcl-1: a gateway to TRAIL sensitization. Cancer Res 68:2062–2064. doi:10.1158/0008-5472.CAN-07-6278

    Article  CAS  PubMed  Google Scholar 

  45. Herrant M et al (2004) Cleavage of Mcl-1 by caspases impaired its ability to counteract Bim-induced apoptosis. Oncogene 23:7863–7873. doi:10.1038/sj.onc.1208069

    Article  CAS  PubMed  Google Scholar 

  46. Lippa MS et al (2007) Expression of anti-apoptotic factors modulates Apo2L/TRAIL resistance in colon carcinoma cells. Apoptosis 12:1465–1478. doi:10.1007/s10495-007-0076-6

    Article  CAS  PubMed  Google Scholar 

  47. Cummins JM et al (2004) X-linked inhibitor of apoptosis protein (XIAP) is a nonredundant modulator of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in human cancer cells. Cancer Res 64:3006–3008

    Article  CAS  PubMed  Google Scholar 

  48. Ndozangue-Touriguine O et al (2008) A mitochondrial block and expression of XIAP lead to resistance to TRAIL-induced apoptosis during progression to metastasis of a colon carcinoma. Oncogene 27:6012–6022. doi:10.1038/onc.2008.197

    Article  CAS  PubMed  Google Scholar 

  49. White-Gilbertson S et al (2009) Ceramide synthase 6 modulates TRAIL sensitivity and nuclear translocation of active caspase-3 in colon cancer cells. Oncogene 28:1132–1141. doi:10.1038/onc.2008.468

    Article  CAS  PubMed  Google Scholar 

  50. Mori T et al (2007) Effect of the XIAP inhibitor Embelin on TRAIL-induced apoptosis of pancreatic cancer cells. J Surg Res 142:281–286. doi:10.1016/j.jss.2007.03.068

    Article  CAS  PubMed  Google Scholar 

  51. Jin Z, McDonald ER, Dicker DT, El-Deiry WS (2004) Deficient tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance to TRAIL-induced apoptosis. J Biol Chem 279:35829–35839. doi:10.1074/jbc.M405538200

    Article  CAS  PubMed  Google Scholar 

  52. Velculescu VE, El-Deiry WS (1996) Biological and clinical importance of the p53 tumor suppressor gene. Clin Chem 42:858–868

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Henriette Kauntz is supported by a fellowship provided by the Conseil Régional d’Alsace, France.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Raul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kauntz, H., Bousserouel, S., Gossé, F. et al. The flavonolignan silibinin potentiates TRAIL-induced apoptosis in human colon adenocarcinoma and in derived TRAIL-resistant metastatic cells. Apoptosis 17, 797–809 (2012). https://doi.org/10.1007/s10495-012-0731-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-012-0731-4

Keywords

Navigation