Skip to main content

Advertisement

Log in

Plasminogen K5 activates mitochondrial apoptosis pathway in endothelial cells by regulating Bak and Bcl-xL subcellular distribution

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Plasminogen Kringle 5(K5) is a proteolytic fragment of plasminogen, which displays potent anti-angiogenic activities. K5 has been shown to induce apoptosis in proliferating endothelial cells; however the exact mechanism has not been well explored. The present study was designed to elucidate the possible molecular mechanism of K5-induced endothelial cell apoptosis. Our results showed that K5 inhibited basic fibroblast growth factors activated in human umbilical vein endothelial cells (HUVECs), indicating proliferation in a dose-dependent manner and induced endothelial cell death via apoptosis. K5 exposure activated caspase 7, 8 and 9. These results suggested that both the intrinsic mitochondrial apoptosis pathway and extrinsic pathway might be involved in K5-induced apoptosis. K5 reduced mitochondrial membrane potential (MMP) of HUVECs, demonstrating mitochondrial depolarization in HUVECs. K5 increased the ratio of Bak to Bcl-xL on mitochondria, decreased the ratio in cytosol, and had no effect on the total amounts of these proteins. K5 also did not effect on Bax/Bcl-2 distribution. K5 increased the ratio of Bak to Bcl-xL on mitochondrial that resulted in mitochondrial depolarization, cytochrome c release and consequently the cleavage of caspase 9. These results suggested that K5 induces endothelial cell apoptosis at least in part via activating mitochondrial apoptosis pathway. The regulation of K5 on Bak and Bcl-xL distribution may play an important role in endothelial cell apoptosis. These results provide further insight into the anti-angiogenesis roles of K5 in angiogenesis-related ocular diseases and solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

K5:

Human plasminogen kringle 5

HUVECs:

Human umbilical vein endothelial cells

bFGF:

Basic fibroblast growth factor

MMP:

Mitochondrial membrane potential

MOM:

Mitochondrial outer membrane

Cyto c:

Cytochrome c

References

  1. Lu H, Dhanabal M, Volk R, Waterman MJ, Ramchandran R, Knebelmann B, Segal M, Sukhatme VP (1999) Kringle 5 causes cell cycle arrest and apoptosis of endothelial cells. Biochem Biophys Res Commun 258:668–673

    Article  PubMed  CAS  Google Scholar 

  2. Ji WR, Barrientos LG, Llinás M, Gray H, Villarreal X, DeFord ME, Castellino FJ, Kramer RA, Trail PA (1998) Selective inhibition by kringle 5 of human plasminogen on endothelial cell migration, an important process in angiogenesis. Biochem Biophys Res Commun 247:414–419

    Article  PubMed  CAS  Google Scholar 

  3. Zhang D, Kaufman PL, Gao G, Saunders RA, Ma JX (2001) Intravitreal injection of plasminogen kringle 5, an endogenous angiogenic inhibitor, arrests retinal neovascularization in rats. Diabetologia 44:757–765

    Article  PubMed  CAS  Google Scholar 

  4. Park K, Chen Y, Hu Y, Mayo AS, Kompella UB, Longeras R, Ma JX (2009) Nanoparticle-mediated expression of an angiogenic inhibitor ameliorates ischemia-induced retinal neovascularization and diabetes-induced retinal vascular leakage. Diabetes 58:1902–1913. doi:10.2337/db08-1327

    Article  PubMed  CAS  Google Scholar 

  5. Yang X, Cheng R, Li C, Cai W, Ma JX, Liu Q, Yang Z, Song Z, Liu Z, Gao G (2006) Kringle 5 of human plasminogen suppresses hepatocellular carcinoma growth both in grafted and xenografted mice by anti-angiogenic activity. Cancer Biol Ther 5:399–405

    Article  PubMed  Google Scholar 

  6. Zhang SX, Sima J, Shao C, Fant J, Chen Y, Rohrer B, Gao G, Ma JX (2004) Plasminogen kringle 5 reduces vascular leakage in the retina in rat models of oxygen-induced retinopathy and diabetes. Diabetologia 47:124–131. doi:10.1007/s00125-003-1276-4

    Article  PubMed  CAS  Google Scholar 

  7. Gao G, Li Y, Gee S, Dudley A, Fant J, Crosson C, Ma JX (2002) Down-regulation of vascular endothelial growth factor and up-regulation of pigment epithelium-derived factor: a possible mechanism for the anti-angiogenic activity of plasminogen kringle 5. J Biol Chem 277:9492–9497

    Article  PubMed  CAS  Google Scholar 

  8. Cai W, Ma J, Li C, Yang Z, Yang X, Liu W, Liu Z, Li M, Gao G (2005) Enhanced anti-angiogenic effect of a deletion mutant of plasminogen kringle 5 on neovascularization. J Cell Biochem 96:1254–1261. doi:10.1002/jcb.20601

    Article  PubMed  CAS  Google Scholar 

  9. Davidson DJ, Haskell C, Majest S, Kherzai A, Egan DA, Walter KA, Schneider A, Gubbins EF, Solomon L, Chen Z, Lesniewski R, Henkin J (2005) Kringle 5 of human plasminogen induces apoptosis of endothelial and tumor cells through surface-expressed glucose-regulated protein 78. Cancer Res 65:4663–4672

    Article  PubMed  CAS  Google Scholar 

  10. Gonzalez-Gronow M, Kalfa T, Johnson CE, Gawdi G, Pizzo SV (2003) The voltage-dependent anion channel is a receptor for plasminogen kringle 5 on human endothelial cells. J Biol Chem 278:27312–27318. doi:10.1074/jbc.M303172200

    Article  PubMed  CAS  Google Scholar 

  11. Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286

    Article  PubMed  CAS  Google Scholar 

  12. Yang Z, Mo X, Gong Q, Pan Q, Yang X, Cai W, Li C, Ma JX, He Y, Gao G (2008) Critical effect of VEGF in the process of endothelial cell apoptosis induced by high glucose. Apoptosis 13:1331–1343

    Article  PubMed  CAS  Google Scholar 

  13. Pastorino JG, Shulga N, Hoek JB (2002) Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem 277:7610–7618

    Article  PubMed  CAS  Google Scholar 

  14. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  PubMed  CAS  Google Scholar 

  15. Campochiaro PA (2004) Ocular neovascularisation and excessive vascular permeability. Expert Opin Biol Ther 4:1395–1402

    Article  PubMed  CAS  Google Scholar 

  16. Yamamoto Y, Maeshima Y, Kitayama H, Kitamura S, Takazawa Y, Sugiyama H, Yamasaki Y, Makino H (2004) Tumstatin peptide, an inhibitor of angiogenesis, prevents glomerular hypertrophy in the early stage of diabetic nephropathy. Diabetes 53:1831–1840

    Article  PubMed  CAS  Google Scholar 

  17. Taylor PC, Sivakumar B (2005) Hypoxia and angiogenesis in rheumatoid arthritis. Curr Opin Rheumatol 17:293–298

    Article  PubMed  Google Scholar 

  18. Maruotti N, Cantatore FP, Crivellato E, Vacca A, Ribatti D (2006) Angiogenesis in rheumatoid arthritis. Histol Histopathol 21:557–566

    PubMed  CAS  Google Scholar 

  19. Gao G, Ma J (2002) Tipping the balance for angiogenic disorders. Drug Discov Today 7:171–172

    Article  PubMed  Google Scholar 

  20. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967–974. doi:10.1038/nature04483

    Article  PubMed  CAS  Google Scholar 

  21. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438(7070):932–936

    Article  PubMed  CAS  Google Scholar 

  22. Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358:2039–2049

    Article  PubMed  CAS  Google Scholar 

  23. Rydzewska-Rosolowska A, Borawski J, Mysliwiec M (2009) High plasma endostatin level unaffected by low-molecular weight heparin in hemodialysis patients—a preliminary report. Adv Med Sci 54:199–202

    Article  PubMed  CAS  Google Scholar 

  24. Pour L, Svachova H, Adam Z, Almasi M, Buresova L, Buchler T, Kovarova L, Nemec P, Penka M, Vorlicek J, Hajek R (2010) Levels of angiogenic factors in patients with multiple myeloma correlate with treatment response. Ann Hematol 89:385–389

    Article  PubMed  CAS  Google Scholar 

  25. Tabruyn SP, Griffioen AW (2007) Molecular pathways of angiogenesis inhibition. Biochem Biophys Res Commun 355:1–5

    Article  PubMed  CAS  Google Scholar 

  26. Dhanabal M, Ramchandran R, Waterman MJ, Lu H, Knebelmann B, Segal M, Sukhatme VP (1999) Endostatin induces endothelial cell apoptosis. J Biol Chem 274:11721–11726

    Article  PubMed  CAS  Google Scholar 

  27. Veitonmäki N, Cao R, Wu LH, Moser TL, Li B, Pizzo SV, Zhivotovsky B, Cao Y (2004) Endothelial cell surface ATP synthase-triggered caspase-apoptotic pathway is essential for k1-5-induced antiangiogenesis. Cancer Res 64:3679–3686

    Article  PubMed  Google Scholar 

  28. Chen YH, Wu HL, Li C, Huang YH, Chiang CW, Wu MP, Wu LW (2006) Anti-angiogenesis mediated by angiostatin K1-3, K1-4 and K1-4.5, involvement of p53, FasL, AKT and mRNA deregulation. Thromb Haemost 95:668–677

    PubMed  CAS  Google Scholar 

  29. Nör JE, Mitra RS, Sutorik MM, Mooney DJ, Castle VP, Polverini PJ (2000) Thrombospondin-1 induces endothelial cell apoptosis and inhibits angiogenesis by activating the caspase death pathway. J Vasc Res 37:209–218

    Article  PubMed  Google Scholar 

  30. Volpert OV (2000) Modulation of endothelial cell survival by an inhibitor of angiogenesis thrombospondin-1: a dynamic balance. Cancer Metastasis Rev 19:87–92

    Article  PubMed  CAS  Google Scholar 

  31. McFarland BC, Stewart JJr, Hamza A, Nordal R, Davidson DJ, Henkin J, Gladson CL (2009) Plasminogen kringle 5 induces apoptosis of brain microvessel endothelial cells: sensitization by radiation and requirement for GRP78 and LRP1. Cancer Res 69:5537–5545

    Article  PubMed  CAS  Google Scholar 

  32. Kim YM, Hwang S, Kim YM, Pyun BJ, Kim TY, Lee ST, Gho YS, Kwon YG (2002) Endostatin blocks vascular endothelial growth factor-mediated signaling via direct interaction with KDR/Flk-1. J Biol Chem 277:27872–27879

    Article  PubMed  CAS  Google Scholar 

  33. Mirochnik Y, Aurora A, Schulze-Hoepfner FT, Deabes A, Shifrin V, Beckmann R, Polsky C, Volpert OV (2009) Short pigment epithelial-derived factor-derived peptide inhibits angiogenesis and tumor growth. Clin Cancer Res 15:1655–1663

    Article  PubMed  CAS  Google Scholar 

  34. Folkman J (2003) Angiogenesis and apoptosis. Semin Cancer Biol 13:159–167

    Article  PubMed  CAS  Google Scholar 

  35. Cao Y, Chen A, An SS, Ji RW, Davidson D, Llinás M (1997) Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth. J Biol Chem 272:22924–22928

    Article  PubMed  CAS  Google Scholar 

  36. Nguyen TM, Subramanian IV, Kelekar A, Ramakrishnan S (2007) Kringle 5 of human plasminogen, an angiogenesis inhibitor, induces both autophagy and apoptotic death in endothelial cells. Blood 109:4793–4802

    Article  PubMed  CAS  Google Scholar 

  37. Hanford HA, Wong CA, Kassan H, Cundiff DL, Chandel N, Underwood S, Mitchell CA, Soff GA (2003) Angiostatin (4.5)-mediated apoptosis of vascular endothelial cells. Cancer Res 63:4275–4280

    PubMed  CAS  Google Scholar 

  38. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    Article  PubMed  CAS  Google Scholar 

  39. Harris MH, Thompson CB (2000) The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ 7:1182–1191

    Article  PubMed  CAS  Google Scholar 

  40. Snyder CM, Shroff EH, Liu J, Chandel NS (2009) Nitric oxide induces cell death by regulating anti-apoptotic BCL-2 family members. PLoS One 4:e7059

    Article  PubMed  Google Scholar 

  41. Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI, Adams JM, Huang DC (2005) Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 19:1294–1305

    Article  PubMed  CAS  Google Scholar 

  42. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2:183–192

    Article  PubMed  CAS  Google Scholar 

  43. Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632

    Article  PubMed  CAS  Google Scholar 

  44. Goldstein JC, Waterhouse NJ, Juin P, Evan GI, Green DR (2000) The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol 2:156–162

    Article  PubMed  CAS  Google Scholar 

  45. Green DR (2006) At the gates of death. Cancer Cell 9:328–330

    Article  PubMed  CAS  Google Scholar 

  46. Yuan S, Fu Y, Wang X, Shi H, Huang Y, Song X, Li L, Song N, Luo Y (2008) Voltage-dependent anion channel 1 is involved in endostatin-induced endothelial cell apoptosis. FASEB J 22:2809–2820

    Article  PubMed  CAS  Google Scholar 

  47. Jourdain A, Martinou JC (2009) Mitochondrial outer-membrane permeabilization and remodelling in apoptosis. Int J Biochem Cell Biol 41:1884–1889

    Article  PubMed  CAS  Google Scholar 

  48. Sheridan C, Martin SJ (2010) Mitochondrial fission/fusion dynamics and apoptosis. Mitochondrion 10:640–648

    Article  PubMed  CAS  Google Scholar 

  49. Gross A, Pilcher K, Blachly-Dyson E, Basso E, Jockel J, Bassik MC, Korsmeyer SJ, Forte M (2000) Biochemical and genetic analysis of the mitochondrial response of yeast to BAX and Bcl-xL. Mol Cell Biol 20:3125–3136

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by National Nature Science Foundation of China, Grant Number: 30600724, 30700120, 30872980, 30971208, 30973449, 81070746, 81001014; National Key Sci-Tech Special Project of China, Grant Number: 2008ZX10002-019, 2009ZX09103-642; Key Project of Nature Science Foundation of Guangdong Province, China, Grant Number: 10251008901000009; Guangdong natural science fund, Grant Number: 7002329, 10151008901000007; Program for Young Teacher in University, Grant Number: 09YKPY73, 10YKPY28; Department of health of Guangdong Province medical research fund, Grant Number A2008548; Program for Bureau of Health of Guangzhou Municipality fund, Grant Number: 2007-YB-061.

Conflict of interest

The author has declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoquan Gao or Xia Yang.

Additional information

X. Gu and Y. Yao have contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10495_2011_618_MOESM1_ESM.tif

Supplement Fig. 1 Effects of caspases inhibitors on the apoptosis of HUVECs induced by K5. a Cells were starved overnight and then treated with K5 at concentration of 640 nmol/l in the presence of 20 ng/ml bFGF and 0.2% FBS for 48 h. The irreversible caspases inhibitors Z-IETD-FMK (caspase8 inhibitor), Z-LEHD-FMK (caspase9 inhibitor), and Z-VAD-FMK (Pan-caspase inhibitor) were used at a final concentration of 10μmol/l dissolved in DMSO and were added 30 min prior to K5 treatment. Cells were stained with Annexin V and PI, respectively, and then quantified by flow cytometry analysis. PBS-treated cells were used as negative control. b All values of statistical analysis represent the mean of three determinations (\( \bar{x} \pm s \),n = 3). (*P<0.05 vs control). The same concentration of 0.1% DMSO as in the caspase inhibitors was added in all other groups to eliminate the interference of DMSO. (TIFF 442 kb)

10495_2011_618_MOESM2_ESM.tif

Supplement Fig. 2 Effect of Z-IETD-FMK on K5-induced distribution of Bak. HUVECs were treated with or without 640 nmol/l K5 and Z-IETD-FMK for 24 h in the presence of 20 ng/ml bFGF and 0.2% FBS. lane1, control; lane 2, treatment by 640 nmol/l K5; lane 3, treatment by Z-IETD-FMK, the inhibitor of caspase8 dissolved in 0.1% DMSO; lane 4, treatment by 10 μmol/l Z-IETD-FMK dissolved in 0.1% DMSO and 640 nmol/l K5. (TIFF 294 kb)

10495_2011_618_MOESM3_ESM.tif

Supplement Fig. 3 Effects of K5 on Bax and Bcl-2 subcellular distribution in HUVECs. a HUVECs were treated with 640nmol/l K5 for 24 h in the presence of 20 ng/ml bFGF and 0.2% FBS. Cells were fractionated to mitochondria and cytosol subfraction. Bax and Bcl-2 proteins in total cell lysate, mitochondria and cytosol subtraction were detected by Western blotting assay. β-actin was loaded as a control to total cell lysate and cytosol subfraction, Cox-IV was loaded as a control to mitochondria subfraction. b Statistics of Bax and Bcl-2 proteins relatively expressed. Signals of each protein were normalized to their control. c Ratios of Bax to Bcl-2 in all kinds of protein were normalized to their control. Each bar in B and C represents a mean±s of three separate experiments. (TIFF 452 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, X., Yao, Y., Cheng, R. et al. Plasminogen K5 activates mitochondrial apoptosis pathway in endothelial cells by regulating Bak and Bcl-xL subcellular distribution. Apoptosis 16, 846–855 (2011). https://doi.org/10.1007/s10495-011-0618-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0618-9

Keywords

Navigation