Skip to main content
Log in

Minocycline suppresses oxidative stress and attenuates fetal cardiac myocyte apoptosis triggered by in utero cocaine exposure

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

This study investigates the molecular mechanisms by which minocycline, a second generation tetracycline, prevents cardiac myocyte death induced by in utero cocaine exposure. Timed mated pregnant Sprague-Dawley (SD) rats received one of the following treatments twice daily from embryonic (E) day 15–21 (E15–E21): (i) intraperitoneal (IP) injections of saline (control); (ii) IP injections of cocaine (15 mg/kg BW); and (iii) IP injections of cocaine + oral administration of 25 mg/kg BW of minocycline. Pups were killed on postnatal day 15 (P15). Additional pregnant dams received twice daily IP injections of cocaine (from E15–E21) + oral administration of a relatively higher (37.5 mg/kg BW) dose of minocycline. Minocycline treatment continued from E15 until the pups were sacrificed on P15. In utero cocaine exposure resulted in an increase in oxidative stress and fetal cardiac myocyte apoptosis through activation of c-Jun-NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK)-mediated mitochondria-dependent apoptotic pathway. Continued minocycline treatment from E15 through P15 significantly prevented oxidative stress, kinase activation, perturbation of BAX/BCL-2 ratio, cytochrome c release, caspase activation, and attenuated fetal cardiac myocyte apoptosis after prenatal cocaine exposure. These results demonstrate in vivo cardioprotective effects of minocycline in preventing fetal cardiac myocyte death after prenatal cocaine exposure. Given its proven clinical safety and ability to cross the placental barrier and enter into the fetal circulation, minocycline may be an effective therapy for preventing cardiac consequences of in utero cocaine exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. DAWN Report: Drug Abuse Warning Network October 2002. http://www.samhsa.gov/oas/major DAWN

  2. DAWN Report: Drug Abuse Network 2005. http://www.drugabuse.gov/PDF/CEWG/AdvReport606.pdf

  3. Feng Q (2005) Postnatal consequences of prenatal cocaine exposure and myocardial apoptosis: does cocaine in utero imperil the adult heart? Br J Pharmacol 144:887–888

    Article  PubMed  CAS  Google Scholar 

  4. McCord J, Jneid H, Hollander JE, de Lemos JA, Cercek B, Hsue P, Gibler WB, Ohman EM, Drew B, Philippides G, Newby LK (2008) Management of cocaine associated chest pain and myocardial infarction: a scientific statement from the American Heart Association Acute Cardiac Care Committee of the Council on Clinical Cardiology. Circulation 117:1897–1907

    Article  PubMed  Google Scholar 

  5. Mone SM, Gillman MW, Miller TL, Herman EH, Lipshultz SE (2004) Effects of environmental exposures on the cardiovascular system: prenatal period through adolescence. Pediatrics 113:1058–1069

    PubMed  Google Scholar 

  6. Gaithner K (2008) Cocaine abuse in pregnancy: an evolution from placenta to pandemonium. Southern Med J 101:783–784

    Article  Google Scholar 

  7. Bae S, Zhang L (2005) Prenatal cocaine exposure increases apoptosis of neonatal rat heart and heart susceptibility to ischemia-reperfusion injury in 1-month-old rat. Br J Pharmacol 144:900–907

    Article  PubMed  CAS  Google Scholar 

  8. Meyer KD, Zhang L (2009) Short- and ling-term adverse effects of cocaine abuse during pregnancy on the heart development. Ther Adv Cardiovasc Dis 3:7–16

    Article  PubMed  Google Scholar 

  9. Li G, Xiao Y, Zhang L (2005) Cocaine-induces apoptosis in fetal rat myocardial cells through p38 mitogen-activated protein kinase and mitochondrial/cytochrome c pathways. J Pharmacol Exp Ther 312:112–119

    Article  PubMed  CAS  Google Scholar 

  10. Kajstura J, Mansukhani M, Cheng W, Reiss K, Krajewski S, Reed JC, Qiaini F, Sonnenblick EH, Anversa P (1995) Programmed cell death and expression of the protooncogene bcl-2 in myocytes during postnatal maturation of the heart. Exp Cell Res 219:110–121

    Article  PubMed  CAS  Google Scholar 

  11. Fernandez E, Siddiquee Z, Shohet RV (2001) Apoptosis and proliferation in the neonatal murine heart. Dev Dyn 221:302–310

    Article  PubMed  CAS  Google Scholar 

  12. Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S, Factor SM, Shirani J, Armstrong RC, Kitsis RN (2003) A mechanistic role of cardiac myocyte apoptosis in heart failure. J Clin Invest 111:497–1504

    Google Scholar 

  13. Scarabelli TM, Gottlieb RA (2004) Functional and clinical repercussions pf myocyte apoptosis in the multifaceted damage by ischemia/reperfusion injury: old and new concepts after 10 years of contributions. Cell Death Differ 11:S144–S152

    Article  PubMed  CAS  Google Scholar 

  14. Foo RS-Y, Mani K, Kitsis RN (2005) Death begins failure in the heart. J Clin Invest 115:565–571

    PubMed  CAS  Google Scholar 

  15. Lee Y, Gustafsson AB (2009) Role of apoptosis in cardiovascular disease. Apoptosis 14:536–548

    Article  PubMed  Google Scholar 

  16. Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–1912

    Article  PubMed  CAS  Google Scholar 

  17. Wada T, Penninger JM (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23:2838–2849

    Article  PubMed  CAS  Google Scholar 

  18. Liang Q, Mollkentin JD (2003) Redefining the roles of p38 and JNK signaling in cardiac hypertrophy: dichotomy between cultured myocytes and animal models. J Mol Cell Cardiol 35:1385–1394

    Article  PubMed  CAS  Google Scholar 

  19. Zhu S, Stavrovskaya IG, Drozda M, Kim BYS, Ona V, Li M, Sarang S, Liu AS, Hartely DM, Chu Wu D, Gullans S, Ferrante RJ, Przedborski S, Kristal BS, Friedlander RM (2002) Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature 417:74–78

    Article  PubMed  CAS  Google Scholar 

  20. Wang X, Zhu S, Drozda M, Zhang W, Stavrovskaya IG, Cattaneo E, Ferrante RJ, Kristal BS, Friedlander RM (2003) Minocycline inhibits caspase-independent and-dependent mitochondrial cell death pathways in models of Huntington’s disease. Proc Natl Acad Sci USA 100:10483–10487

    Article  PubMed  CAS  Google Scholar 

  21. Castanares M, Vera Y, Erkkila K, Kyttanen S, Lue Y, Dunkel L, Wang C, Swerdloff RS, Sinha Hikim AP (2005) Minocycline up-regulates BCL-2 levels in mitochondria and attenuates male germ cell apoptosis. Biochem Biophys Res Commun 337:663–669

    Article  PubMed  CAS  Google Scholar 

  22. Vera Y, Rodriguez S, Castanares M, Lue Y, Atienza V, Wang C, Swerdloff RS, Sinha Hikim AP (2005) Functional role of caspases in heat-induced testicular germ cell apoptosis. Biol Reprod 72:516–522

    Article  PubMed  CAS  Google Scholar 

  23. Sun H-Y, Wang N-P, Halkos M, Kerendi F, Kin H, Guyton RA, Vinten-Johansen J, Zhao Z-Q (2006) Postconditioning attenuates cardiomyocyte apoptosis by inhibiting JNK and p38 mitogen-activated protein kinase signaling pathways. Apoptosis 11:1583–1593

    Article  PubMed  CAS  Google Scholar 

  24. Sinha-Hikim I, Braga M, Shen R, Sinha Hikim AP (2007) Involvement of c-Jun NH2-terminal kinase and nitric oxide-mediated mitochondria-dependent intrinsic pathway signaling in cardiotoxin-induced muscle cell death: role of testosterone. Apoptosis 12:1965–1978

    Article  PubMed  CAS  Google Scholar 

  25. Braga M, Sinha Hikim AP, Datta S, Ferrini M, Brown D, Kovacheva EL, Gonzalez-Cadavid NF, Sinha-Hikim I (2008) Involvement of oxidative stress and caspase 2-mediated intrinsic pathway signaling in age-related increase in muscle cell apoptosis in mice. Apoptosis 13:822–832

    Article  PubMed  CAS  Google Scholar 

  26. Friedlander RM (2003) Apoptosis and caspases in neurodegenerative diseases. N Engl J Med 348:1365–1375

    Article  PubMed  CAS  Google Scholar 

  27. Teng YD, Choi H, Onario RC, Zhu S, Desilets FC, Lan S, Woodard EJ, Snyder EY, Eichler ME, Friedlander RM (2004) Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury. Proc Natl Acad Sci USA 101:3071–3076

    Article  PubMed  CAS  Google Scholar 

  28. Bae S, Gilbert RD, Ducsay CA, Zhang L (2005) Prenatal cocaine exposure increases heart susceptibility to ischaemia-reperfusion injury in adult male but not female rats. J Physiol 565:149–158

    Article  PubMed  CAS  Google Scholar 

  29. Vera Y, Erkkila K, Wang C, Nunez C, Kyttanen S, Lue Y, Dunkel L, Swerdloff RS, Sinha Hikim AP (2006) Involvement of p38 mitogen-activated protein kinase and inducible nitric oxide synthase in apoptotic signaling of murine and human male germ cells after hormone deprivation. Mol Endocrinol 20:1597–1609

    Article  PubMed  CAS  Google Scholar 

  30. Kovacheva EL, Sinha Hikim AP, Shen R, Sinha I, Sinha-Hikim I (2010) Testosterone supplementation reverses sarcopenia in aging through regulation of myostatin, c-Jun NH2-terminal kinase, Notch, and Akt signaling pathways. Endocrinology 151:628–638

    Article  PubMed  CAS  Google Scholar 

  31. Sinha-Hikim I, Shen R, Lee W-NP, Crum A, Vaziri ND, Norris KC (2010) Effect of a novel cystine based glutathione precursor on oxidative stress in vascular smooth muscle cells. Am J Physiol Cell Physiol 299:C638–C642

    Article  PubMed  CAS  Google Scholar 

  32. Kohen R, Nysks A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reaction, and methods for their quantification. Toxicol Pathol 30:620–650

    Article  PubMed  CAS  Google Scholar 

  33. Tam NNC, Gao Y, Leung Y-K, Ho S-M (2003) Androgenic regulation of oxidative stress in the rat prostate: involvement of NAD(P)H oxidases and antioxidant defense machinery during prostatic involution and regrowth. Am J Pathol 163:2513–2522

    Article  PubMed  CAS  Google Scholar 

  34. Jia Y, Castellanos J, Wang C, Sinha-Hikim I, Lue Y, Swerdloff RS, Sinha Hikim AP (2009) Mitogen-activated protein kinase signaling in male germ cell apoptosis. Biol Reprod 80:771–780

    Article  PubMed  CAS  Google Scholar 

  35. Sinha-Hikim I, Shen R, Kovacheva E, Crum A, Vaziri ND, Norris KC (2010) Inhibition of apoptotic signaling in spermine-treated vascular smooth muscle cells by a novel glutathione precursor. Cell Biol Int 34:503–511

    Article  PubMed  CAS  Google Scholar 

  36. Kuzmenkin A, Liang H, Xu G, Pfannkuche K, Eichhorn H, Fatima A, Luo H, Saric T, Werning M, Jaenisch R, Hescheler J (2009) Functional characterization of cardiomyocytes derived from murine induced pluripotent cells in vitro. FASEB J 23:4168–4180

    Article  PubMed  CAS  Google Scholar 

  37. Jin M-S, Shi S, Zhang Y, Yan Y, Sun X-D, Liu W, Liu H-W (2010) Icariin-mediated differentiation of mouse adipose-derived stem cells into cardiomyocytes. Mol Cell Biochem 344:1–9

    Article  PubMed  CAS  Google Scholar 

  38. Duysen EG, Li B, Carlson M, Li Y-F, Wieseler S, Hinrichs SH, Lockridge O (2008) Increased hepatotoxicity and cardiac fibrosis in cocaine-treated butyrulchokinesterase knockout mice. Basic Clin Pharmacol Toxicol 103:514–521

    Article  PubMed  CAS  Google Scholar 

  39. Franco R, Cidlowski JA (2009) Apoptosis and glutathione: beyond an oxidant. Cell Death Differ 16:1303–1314

    Article  PubMed  CAS  Google Scholar 

  40. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Article  PubMed  CAS  Google Scholar 

  41. Stirling DP, Koochesfahani KM, Steeves JD, Tetzlaff W (2005) Minocycline as a neuroprotective agent. Neuroscientist 11:308–322

    Article  PubMed  CAS  Google Scholar 

  42. Boess F, Ndikum-Moffor FM, Boelsterli UA, Roberts SM (2000) Effects of cocaine and its oxidative metabolites on mitochondrial respiration and generation of reactive oxygen species. Biochem Pharamacol 60:615–623

    Article  CAS  Google Scholar 

  43. Kovacic P (2005) Role of oxidative metabolites of cocaine in toxicity and addiction: oxidative stress and electron transfer. Med Hypo 64:350–356

    Article  CAS  Google Scholar 

  44. Fan L, Sawbridge D, George V, Teng L, Bailey A, Kitchen I, Li J-M (2009) Chronic cocaine-induced cardiac oxidative stress and mitogen activated protein kinase activation: the role of Nox2 oxidase. J Phramacol Exp Ther 328:99–106

    Article  CAS  Google Scholar 

  45. Kim JK, Pedram A, Razandi M, Levin ER (2006) Estrogen prevents cardiomyocyte apoptosis through inhibition of reactive oxygen species and differential regulation of p38 kinase isoforms. J Biol Chem 281:6760–6767

    Article  PubMed  CAS  Google Scholar 

  46. Circu ML, Aw TY (2008) Glutathione and apoptosis. Free Radic Res 42:689–706

    Article  PubMed  CAS  Google Scholar 

  47. Tikka T, Fiebich BL, Goldsteins G, Keinanen R, Koistinaho J (2001) Minocycline, a tetracycline derivative, is neuroprotective against excytotoxicity by inhibiting activation and proliferation of microglia. J Neurosci 21:2580–2588

    PubMed  CAS  Google Scholar 

  48. Wei X, Zhao L, Liu J, Dodel RC, Farlow MR, Du Y (2005) Minocycline prevents gentamicin-induced ototoxicity by inhibiting p38 MAP kinase phosphorylation and caspase 3 activation. Neuroscience 131:513–521

    Article  PubMed  CAS  Google Scholar 

  49. Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavel RA, Davis RJ (2000) Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288:870–874

    Article  PubMed  CAS  Google Scholar 

  50. Lei K, Nimnual A, Zong W-X, Kennedy NJ, Flavel RA, Thompson CB, Bar-Sagi D, Davis RJ (2002) The Bax subfamily of Bcl-2 related proteins is essential for apoptotic signal transduction by c-Jun NH2-terminal kinase. Mol Cell Biol 22:4929–4942

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by MIDARP grant from NIH (to I.S-H and A.P.S-H). Additional support was provided by the NIH/NIGMS Program (S06 GM068510; A.P.S-H) and by the NIH-NCCR Accelerating Excellence in Translation Science Grant (U54 RR026138; Norris, KC). S.K.M. is supported by grants form the Department of Veteran Affairs and the National Institutes of Health (RO1 DA011311 and PO HL58120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amiya P. Sinha-Hikim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinha-Hikim, I., Shen, R., Nzenwa, I. et al. Minocycline suppresses oxidative stress and attenuates fetal cardiac myocyte apoptosis triggered by in utero cocaine exposure. Apoptosis 16, 563–573 (2011). https://doi.org/10.1007/s10495-011-0590-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0590-4

Keywords

Navigation