Skip to main content
Log in

Insulin-like growth factor 1 protects human neuroblastoma cells SH-EP1 against MPP+-induced apoptosis by AKT/GSK-3β/JNK signaling

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is primarily caused by severe degeneration and loss of dopamine neurons in the substantia nigra pars compacta. Thus, preventing the death of dopaminergic neurons is thought to be a potential strategy to interfere with the development of PD. In the present work, we studied the effect of insulin-like growth factor-1 (IGF-1) on 1-methyl-4-phenylpyridinium (MPP+)-induced apoptosis in human neuroblastoma SH-EP1 cells. We found that the PI3K/AKT pathway plays a central role in IGF-mediated cell survival against MPP+ neurotoxicity. Furthermore, we demonstrated that the protective effect of AKT is largely dependent on the inactivation of GSK-3β, since inhibition of GSK-3β by its inhibitor, BIO, could mimic the protective effect of IGF-1 on MPP+-induced cell death in SH-EP1 cells. Interestingly, the IGF-1 potentiated PI3K/AKT activity is found to negatively regulate the JNK related apoptotic pathway and this negative regulation is further shown to be mediated by AKT-dependent GSK-3β inactivation. Thus, our results demonstrated that IGF-1 protects SH-EP1 cells from MPP+-induced apoptotic cell death via PI3K/AKT/GSK-3β pathway, which in turn inhibits MPP+-induced JNK activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eberhardt O, Schulz JB (2003) Apoptotic mechanisms and antiapoptotic therapy in the MPTP model of Parkinson’s disease. Toxicol Lett 139:135–151

    Article  CAS  PubMed  Google Scholar 

  2. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  CAS  PubMed  Google Scholar 

  3. Kingsbury AE, Mardsen CD, Foster OJ (1998) DNA fragmentation in human substantia nigra: apoptosis or perimortem effect? Mov Disord 13:877–884

    Article  CAS  PubMed  Google Scholar 

  4. Mochizuki H, Goto K, Mori H, Mizuno Y (1996) Histochemical detection of apoptosis in Parkinson’s disease. J Neurol Sci 137:120–123

    Article  CAS  PubMed  Google Scholar 

  5. Tatton NA, Maclean-Fraser A, Tatton WG, Perl DP, Olanow CW (1998) A fluorescent double-labeling method to detect and confirm apoptotic nuclei in Parkinson’s disease. Ann Neurol 44:S142–S148

    CAS  PubMed  Google Scholar 

  6. Tompkins MM, Basgall EJ, Zamrini E, Hill WD (1997) Apoptotic-like changes in Lewy-body-associated disorders and normal aging in substantia nigral neurons. Am J Pathol 150:119–131

    CAS  PubMed  Google Scholar 

  7. Saporito MS, Thomas BA, Scott RW (2000) MPTP activates c-Jun NH(2)-terminal kinase (JNK) and its upstream regulatory kinase MKK4 in nigrostriatal neurons in vivo. J Neurochem 75:1200–1208

    Article  CAS  PubMed  Google Scholar 

  8. Hantraye P, Varastet M, Peschanski M et al (1993) Stable parkinsonian syndrome and uneven loss of striatal dopamine fibres following chronic MPTP administration in baboons. Neuroscience 53:169–178

    Article  CAS  PubMed  Google Scholar 

  9. Tatton NA, Kish SJ (1997) In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. Neuroscience 77:1037–1048

    Article  CAS  PubMed  Google Scholar 

  10. Hartley A, Stone JM, Heron C, Cooper JM, Schapira AH (1994) Complex I inhibitors induce dose-dependent apoptosis in PC12 cells: relevance to Parkinson’s disease. J Neurochem 63:1987–1990

    Article  CAS  PubMed  Google Scholar 

  11. Fall CP, Bennett JP Jr (1999) Characterization and time course of MPP+-induced apoptosis in human SH-SY5Y neuroblastoma cells. J Neurosci Res 55:620–628

    Article  CAS  PubMed  Google Scholar 

  12. Vardatsikos G, Sahu A, Srivastava AK (2009) The insulin-like growth factor family: molecular mechanisms, redox regulation, and clinical implications. Antioxid Redox Signal 11:1165–1190

    Article  CAS  PubMed  Google Scholar 

  13. Kooijman R (2006) Regulation of apoptosis by insulin-like growth factor (IGF)-I. Cytokine Growth Factor Rev 17:305–323

    Article  CAS  PubMed  Google Scholar 

  14. De Keyser J, Wilczak N, De Backer JP, Herroelen L, Vauquelin G (1994) Insulin-like growth factor-I receptors in human brain and pituitary gland: an autoradiographic study. Synapse 17:196–202

    Article  PubMed  Google Scholar 

  15. Nadjar A, Berton O, Guo S et al (2009) IGF-1 signaling reduces neuro-inflammatory response and sensitivity of neurons to MPTP. Neurobiol Aging 30:2021–2030

    Article  CAS  PubMed  Google Scholar 

  16. Kawano T, Fukunaga K, Takeuchi Y et al (2001) Neuroprotective effect of sodium orthovanadate on delayed neuronal death after transient forebrain ischemia in gerbil hippocampus. J Cereb Blood Flow Metab 21:1268–1280

    Article  CAS  PubMed  Google Scholar 

  17. Poe BH, Linville C, Riddle DR, Sonntag WE, Brunso-Bechtold JK (2001) Effects of age and insulin-like growth factor-1 on neuron and synapse numbers in area CA3 of hippocampus. Neuroscience 107:231–238

    Article  CAS  PubMed  Google Scholar 

  18. Offen D, Shtaif B, Hadad D, Weizman A, Melamed E, Gil-Ad I (2001) Protective effect of insulin-like-growth-factor-1 against dopamine-induced neurotoxicity in human and rodent neuronal cultures: possible implications for Parkinson’s disease. Neurosci Lett 316:129–132

    Article  CAS  PubMed  Google Scholar 

  19. Bilak MM, Kuncl RW (2001) Delayed application of IGF-I and GDNF can rescue already injured postnatal motor neurons. Neuroreport 12:2531–2535

    Article  CAS  PubMed  Google Scholar 

  20. Vincent AM, Mobley BC, Hiller A, Feldman EL (2004) IGF-I prevents glutamate-induced motor neuron programmed cell death. Neurobiol Dis 16:407–416

    Article  CAS  PubMed  Google Scholar 

  21. Yamada M, Tanabe K, Wada K et al (2001) Differences in survival-promoting effects and intracellular signaling properties of BDNF and IGF-1 in cultured cerebral cortical neurons. J Neurochem 78:940–951

    Article  CAS  PubMed  Google Scholar 

  22. Ross RA, Spengler BA, Biedler JL (1983) Coordinate morphological and biochemical interconversion of human neuroblastoma cells. J Natl Cancer Inst 71:741–747

    CAS  PubMed  Google Scholar 

  23. Wu Y, Shang Y, Sun S, Liang H, Liu R (2007) Erythropoietin prevents PC12 cells from 1-methyl-4-phenylpyridinium ion-induced apoptosis via the Akt/GSK-3beta/caspase-3 mediated signaling pathway. Apoptosis 12:1365–1375

    Article  CAS  PubMed  Google Scholar 

  24. Yang HJ, Wang L, Xia YY, Chang PN, Feng ZW (2009) NF-kappaB mediates MPP+-induced apoptotic cell death in neuroblastoma cells SH-EP1 through JNK and c-Jun/AP-1. Neurochem Int 56:128–134

    Google Scholar 

  25. Feng Z, Li L, Ng PY, Porter AG (2002) Neuronal differentiation and protection from nitric oxide-induced apoptosis require c-Jun-dependent expression of NCAM140. Mol Cell Biol 22:5357–5366

    Article  CAS  PubMed  Google Scholar 

  26. Dodel RC, Du Y, Bales KR, Ling ZD, Carvey PM, Paul SM (1998) Peptide inhibitors of caspase-3-like proteases attenuate 1-methyl-4-phenylpyridinum-induced toxicity of cultured fetal rat mesencephalic dopamine neurons. Neuroscience 86:701–707

    Article  CAS  PubMed  Google Scholar 

  27. Du Y, Dodel RC, Bales KR, Jemmerson R, Hamilton-Byrd E, Paul SM (1997) Involvement of a caspase-3-like cysteine protease in 1-methyl-4-phenylpyridinium-mediated apoptosis of cultured cerebellar granule neurons. J Neurochem 69:1382–1388

    Article  CAS  PubMed  Google Scholar 

  28. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789

    Article  CAS  PubMed  Google Scholar 

  29. Kihira T, Suzuki A, Kondo T et al (2009) Immunohistochemical expression of IGF-I and GSK in the spinal cord of Kii and Guamanian ALS patients. Neuropathology 29:548–558

    Article  PubMed  Google Scholar 

  30. Pap M, Cooper GM (1998) Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-kinase/Akt cell survival pathway. J Biol Chem 273:19929–19932

    Article  CAS  PubMed  Google Scholar 

  31. Chin PC, Majdzadeh N, D’Mello SR (2005) Inhibition of GSK3beta is a common event in neuroprotection by different survival factors. Brain Res Mol Brain Res 137:193–201

    Article  CAS  PubMed  Google Scholar 

  32. Galvan V, Logvinova A, Sperandio S, Ichijo H, Bredesen DE (2003) Type 1 insulin-like growth factor receptor (IGF-IR) signaling inhibits apoptosis signal-regulating kinase 1 (ASK1). J Biol Chem 278:13325–13332

    Article  CAS  PubMed  Google Scholar 

  33. Aikin R, Maysinger D, Rosenberg L (2004) Cross-talk between phosphatidylinositol 3-kinase/AKT and c-jun NH2-terminal kinase mediates survival of isolated human islets. Endocrinology 145:4522–4531

    Article  CAS  PubMed  Google Scholar 

  34. Allen RT, Krueger KD, Dhume A, Agrawal DK (2005) Sustained Akt/PKB activation and transient attenuation of c-jun N-terminal kinase in the inhibition of apoptosis by IGF-1 in vascular smooth muscle cells. Apoptosis 10:525–535

    Article  CAS  PubMed  Google Scholar 

  35. Lin Y, Yang Q, Wang X, Liu ZG (2006) The essential role of the death domain kinase receptor-interacting protein in insulin growth factor-I-induced c-Jun N-terminal kinase activation. J Biol Chem 281:23525–23532

    Article  CAS  PubMed  Google Scholar 

  36. Kim JW, Lee JE, Kim MJ, Cho EG, Cho SG, Choi EJ (2003) Glycogen synthase kinase 3 beta is a natural activator of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 1 (MEKK1). J Biol Chem 278:13995–14001

    Article  CAS  PubMed  Google Scholar 

  37. Dore S, Kar S, Quirion R (1997) Insulin-like growth factor I protects and rescues hippocampal neurons against beta-amyloid- and human amylin-induced toxicity. Proc Natl Acad Sci USA 94:4772–4777

    Article  CAS  PubMed  Google Scholar 

  38. Matthews CC, Feldman EL (1996) Insulin-like growth factor I rescues SH-SY5Y human neuroblastoma cells from hyperosmotic induced programmed cell death. J Cell Physiol 166:323–331

    Article  CAS  PubMed  Google Scholar 

  39. Yuan Z, Kim D, Shu S, et al (2010) Phosphoinositide 3-kinase/Akt inhibits MST1-mediated pro-apoptotic signaling through phosphorylation of threonine 120. J Biol Chem 285:3815–3824

    Google Scholar 

  40. Kenchappa P, Yadav A, Singh G, Nandana S, Banerjee K (2004) Rescue of TNFalpha-inhibited neuronal cells by IGF-1 involves Akt and c-Jun N-terminal kinases. J Neurosci Res 76:466–474

    Article  CAS  PubMed  Google Scholar 

  41. Leinninger GM, Backus C, Uhler MD, Lentz SI, Feldman EL (2004) Phosphatidylinositol 3-kinase and Akt effectors mediate insulin-like growth factor-I neuroprotection in dorsal root ganglia neurons. FASEB J 18:1544–1546

    CAS  PubMed  Google Scholar 

  42. Halvorsen EM, Dennis J, Keeney P, Sturgill TW, Tuttle JB, Bennett JB Jr (2002) Methylpyridinium (MPP(+))- and nerve growth factor-induced changes in pro- and anti-apoptotic signaling pathways in SH-SY5Y neuroblastoma cells. Brain Res 952:98–110

    Article  CAS  PubMed  Google Scholar 

  43. Nitta A, Zheng WH, Quirion R (2004) Insulin-like growth factor 1 prevents neuronal cell death induced by corticosterone through activation of the PI3K/Akt pathway. J Neurosci Res 76:98–103

    Article  CAS  PubMed  Google Scholar 

  44. Almeida RD, Manadas BJ, Melo CV et al (2005) Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ 12:1329–1343

    Article  CAS  PubMed  Google Scholar 

  45. Levresse V, Butterfield L, Zentrich E, Heasley LE (2000) Akt negatively regulates the cJun N-terminal kinase pathway in PC12 cells. J Neurosci Res 62:799–808

    Article  CAS  PubMed  Google Scholar 

  46. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274

    Article  CAS  PubMed  Google Scholar 

  47. Allard D, Figg N, Bennett MR, Littlewood TD (2008) Akt regulates the survival of vascular smooth muscle cells via inhibition of FoxO3a and GSK3. J Biol Chem 283:19739–19747

    Article  CAS  PubMed  Google Scholar 

  48. King TD, Bijur GN, Jope RS (2001) Caspase-3 activation induced by inhibition of mitochondrial complex I is facilitated by glycogen synthase kinase-3beta and attenuated by lithium. Brain Res 919:106–114

    Article  CAS  PubMed  Google Scholar 

  49. Petit-Paitel A, Brau F, Cazareth J, Chabry J (2009) Involvment of cytosolic and mitochondrial GSK-3beta in mitochondrial dysfunction and neuronal cell death of MPTP/MPP-treated neurons. PLoS One 4:e5491

    Article  PubMed  Google Scholar 

  50. Wang W, Yang Y, Ying C et al (2007) Inhibition of glycogen synthase kinase-3beta protects dopaminergic neurons from MPTP toxicity. Neuropharmacology 52:1678–1684

    Article  CAS  PubMed  Google Scholar 

  51. Sun X, Huang L, Zhang M, Sun S, Wu Y (2010) Insulin like growth factor-1 prevents 1-mentyl-4-phenylphyridinium-induced apoptosis in PC12 cells through activation of glycogen synthase kinase-3beta. Toxicology 271:5–12

    Google Scholar 

  52. Youdim MB, Arraf Z (2004) Prevention of MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) dopaminergic neurotoxicity in mice by chronic lithium: involvements of Bcl-2 and Bax. Neuropharmacology 46:1130–1140

    Article  CAS  PubMed  Google Scholar 

  53. Hunot S, Vila M, Teismann P et al (2004) JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 101:665–670

    Article  CAS  PubMed  Google Scholar 

  54. Jiang H, Ren Y, Zhao J, Feng J (2004) Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis. Hum Mol Genet 13:1745–1754

    Article  CAS  PubMed  Google Scholar 

  55. Xia XG, Harding T, Weller M, Bieneman A, Uney JB, Schulz JB (2001) Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci USA 98:10433–10438

    Article  CAS  PubMed  Google Scholar 

  56. Maroney AC, Finn JP, Bozyczko-Coyne D et al (1999) CEP-1347 (KT7515), an inhibitor of JNK activation, rescues sympathetic neurons and neuronally differentiated PC12 cells from death evoked by three distinct insults. J Neurochem 73:1901–1912

    CAS  PubMed  Google Scholar 

  57. Wang W, Ma C, Mao Z, Li M (2004) JNK inhibition as a potential strategy in treating Parkinson’s disease. Drug News Perspect 17:646–654

    Article  CAS  PubMed  Google Scholar 

  58. Duka T, Duka V, Joyce JN, Sidhu A (2009) Alpha-Synuclein contributes to GSK-3beta-catalyzed Tau phosphorylation in Parkinson’s disease models. FASEB J 23:2820–2830

    Article  CAS  PubMed  Google Scholar 

  59. Mishra R, Barthwal MK, Sondarva G et al (2007) Glycogen synthase kinase-3beta induces neuronal cell death via direct phosphorylation of mixed lineage kinase 3. J Biol Chem 282:30393–30405

    Article  CAS  PubMed  Google Scholar 

  60. Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286:1358–1362

    Article  CAS  PubMed  Google Scholar 

  61. Gozdz A, Habas A, Jaworski J et al (2003) Role of N-methyl-D-aspartate receptors in the neuroprotective activation of extracellular signal-regulated kinase 1/2 by cisplatin. J Biol Chem 278:43663–43671

    Article  CAS  PubMed  Google Scholar 

  62. Jin K, Mao XO, Zhu Y, Greenberg DA (2002) MEK and ERK protect hypoxic cortical neurons via phosphorylation of Bad. J Neurochem 80:119–125

    Article  CAS  PubMed  Google Scholar 

  63. Stanciu M, Wang Y, Kentor R et al (2000) Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. J Biol Chem 275:12200–12206

    Article  CAS  PubMed  Google Scholar 

  64. Satoh T, Nakatsuka D, Watanabe Y, Nagata I, Kikuchi H, Namura S (2000) Neuroprotection by MAPK/ERK kinase inhibition with U0126 against oxidative stress in a mouse neuronal cell line and rat primary cultured cortical neurons. Neurosci Lett 288:163–166

    Article  CAS  PubMed  Google Scholar 

  65. Runden E, Seglen PO, Haug FM et al (1998) Regional selective neuronal degeneration after protein phosphatase inhibition in hippocampal slice cultures: evidence for a MAP kinase-dependent mechanism. J Neurosci 18:7296–7305

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grant BMRC 05/1/33/19/412 from Biomedical Research Council of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Wei Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Yang, HJ., Xia, YY. et al. Insulin-like growth factor 1 protects human neuroblastoma cells SH-EP1 against MPP+-induced apoptosis by AKT/GSK-3β/JNK signaling. Apoptosis 15, 1470–1479 (2010). https://doi.org/10.1007/s10495-010-0547-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0547-z

Keywords

Navigation