Skip to main content

Advertisement

Log in

Ouabain-induced apoptosis and Rho kinase: a novel caspase-2 cleavage site and fragment of Rock-2

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Ouabain, a specific Na+/K+-ATPase inhibitor, has recently been identified as a mammalian hormone. Its elevated concentrations in human plasma have also been associated with pathogenesis of several diseases. Recent studies have shown that ouabain induces aponecrotic cell death in a cell-type- and dose-dependent manner. However, the exact mechanism of ouabain-induced cell death is not fully understood. The Rho GTPase effectors Rho kinases-1 and -2 (Rock-1 and Rock-2) which play central roles in the organization of the actin cytoskeleton, involve in several models of apoptosis. In this study, we investigated the possible involvement of Rocks in ouabain-induced human umbilical vein endothelial cell (HUVEC) apoptosis. Ouabain treatment resulted in loss of cell–cell and cell–substratum adhesion and apoptotic blebbing. Pretreatment of cells with Y-27632, a specific Rock inhibitor, resulted in the inhibition of cell-to-cell detachment and formation of membrane blebs. However, Y-27632 did not prevent ouabain-induced cell–substratum detachment. Instead, treatment with Y-27632 actually accelerated this process. Ouabain treatment induced cleavage of Rock-1 and Rock-2, which was prevented by caspase-3 and caspase-2 specific inhibitors z-DEVD-fmk and z-VDVAD-fmk, respectively. Ouabain-induced Rock-2 cleavage generated a fragment of approximately 140 kDa corresponding to the consensus sequence of caspase-2 on the carboxy terminus of Rock-2. Although it has been previously shown that Rock-2 was cleaved by caspase-2, we have identified here a novel cleavage site and fragment of Rock-2. Our data indicate that ouabain induces both Rock-1 and Rock-2 cleavage via caspase-dependent mechanisms and provide evidence that Rocks are involved in ouabain-induced cell-to-cell detachment and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yu SP (2003) Na(+)K(+)-ATPase: the new face of an old player in pathogenesis and apoptotic/hybrid cell death. Biochem Pharmacol 66:1601–1609

    Article  CAS  PubMed  Google Scholar 

  2. Xie Z, Cai T (2003) Na(+)-K(+)-ATPase-mediated signal transduction: from protein interaction to cellular function. Mol Interv 3:157–168

    Article  CAS  PubMed  Google Scholar 

  3. Hamlyn JM, Blaustein MP, Bova S, DuCharme DW, Harris DW, Mandel F, Mathews WR, Ludens JH (1991) Identification and characterization of a ouabain-like compound from human plasma. Proc Natl Acad Sci USA 88:6259–6263

    Article  CAS  PubMed  Google Scholar 

  4. Sophocleous A, Elmatzoglou I, Souvatzoglou A (2003) Circulating endogenous digitalis-like factor(s) (EDLF) in man is derived from the adrenals and its secretion is ACTH-dependent. J Endocrinol Investig 26:668–674

    CAS  Google Scholar 

  5. El-Masri MA, Clark BJ, Qazzaz HM, Valdes R Jr (2002) Human adrenal cells in culture produce both ouabain-like and dihydroouabain-like factors. Clin Chem 48:1720–1730

    CAS  PubMed  Google Scholar 

  6. Manunta P, Ferrandi M, Bianchi G, Hamlyn JM (2009) Endogenous ouabain in cardiovascular function and disease. J Hypertens 27:9–18 (review)

    Article  CAS  PubMed  Google Scholar 

  7. Kulikov A, Eva A, Kirch U, Boldyrev A, Scheiner-Bobis G (2007) Ouabain activates signaling pathways associated with cell death in human neuroblastoma. Biochim Biophys Acta 1768:1691–1702

    Article  CAS  PubMed  Google Scholar 

  8. Contreras RG, Shoshani L, Flores-Maldonado C, Lázaro A, Cereijido M (1999) Relationship between Na(+), K(+)-ATPase and cell attachment. J Cell Sci 112:4223–4232

    CAS  PubMed  Google Scholar 

  9. Liu J, Liang M, Liu L, Malhotra D, Xie Z, Shapiro JI (2005) Ouabain-induced endocytosis of the plasmalemmal Na/K-ATPase in LLC-PK1 cells requires caveolin-1. Kidney Int 67:1844–1854

    Article  CAS  PubMed  Google Scholar 

  10. Larre I, Ponce A, Fiorentino R, Shoshani L, Contreras RG, Cereijido M (2006) Contacts and cooperation between cells depend on the hormone ouabain. Proc Natl Acad Sci USA 18;103(29):10911–10916

    Google Scholar 

  11. Akimova OA, Lopina OD, Hamet P, Orlov SN (2005) Search for intermediates of Na+, K+-ATPase-mediated [Na+]i/[K+]i-independent death signaling triggered by cardiotonic steroids. Pathophysiology 12:125–135

    Article  CAS  PubMed  Google Scholar 

  12. Akimova OA, Lopina OD, Rubtsov AM, Gekle M, Tremblay J, Hamet P, Orlov SN (2009) Death of ouabain-treated renal epithelial cells: evidence for p38 MAPK-mediated Na (i) (+) /K (i) (+)-independent signaling. Apoptosis 14:1266–1273

    Article  CAS  PubMed  Google Scholar 

  13. Leung T, Manser E, Tan L, Lim L (1995) A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J Biol Chem 270:29051–29054

    Article  CAS  PubMed  Google Scholar 

  14. Ishizaki T, Maekava M, Fukisawa K, Okawa K, Iwamatsu A, Fujita A, Watanabe N, Saito Y, Kakizuka A, Morii N, Narumiya S (1996) The small GTP-binding protein Rho binds and activates a160 kDa Ser/Thr protein kinase homologous to mytonic dysrophy kinase. EMBO J 15:1885–1893

    CAS  PubMed  Google Scholar 

  15. Ark M, Kubat H, Beydaği H, Ergenoğlu T, Songu-Mize E (2006) Involvement of rho kinase in the ouabain-induced contractions of the rat renal arteries. Biochem Biophys Res Commun 340:417–421

    Article  CAS  PubMed  Google Scholar 

  16. Fukata Y, Amano M, Kaibuchi K (2001) Rho–Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol Sci 22:32–39

    Article  CAS  PubMed  Google Scholar 

  17. Masumoto A, Hirooka Y, Shimokawa H, Hironaga K, Setoguchi S, Takeshita A (2001) Possible involvement of Rho-kinase in the pathogenesis of hypertension in humans. Hypertension 38:1307–1310

    Article  CAS  PubMed  Google Scholar 

  18. Sato M, Tani E, Fujikawa H, Yamaura I, Arita N, Kaibuchi K (2000) Involvement of Rho-kinase-mediated phosphorylation of myosin light chain in enhancement of cerebral vasospasm. Circ Res 87:195–200

    CAS  PubMed  Google Scholar 

  19. Ark M, Yilmaz N, Yazici G, Kubat H, Aktaş S (2005) Rho-associated protein kinase II (rock II) expression in normal and preeclamptic human placentas. Placenta 26:81–84

    Article  CAS  PubMed  Google Scholar 

  20. Kamai T, Tsujii T, Arai K, Takagi K, Asami H, Ito Y, Oshima H (2003) Significant association of Rho/ROCK pathway with invasion and metastasis of bladder cancer. Clin Cancer Res 9:2632–2641

    CAS  PubMed  Google Scholar 

  21. Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF (2001) Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 3:339–345

    Article  CAS  PubMed  Google Scholar 

  22. Sebbagh M, Renvoize C, Hamelin J, Riche N, Bertoglio J, Breard J (2001) Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 3:346–352

    Article  CAS  PubMed  Google Scholar 

  23. Sebbagh M, Hamelin J, Bertoglio J, Solary E, Breard J (2005) Direct cleavage of ROCK II by granzyme B induces target cell membrane blebbing in a caspase-independent manner. J Exp Med 201:465–471

    Article  CAS  PubMed  Google Scholar 

  24. Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y, Kaibuchi K (1996) Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 271:20246–20249

    Article  CAS  PubMed  Google Scholar 

  25. Kureishi Y, Kobayashi S, Amano M, Kimura K, Kanaide H, Nakano T, Kaibuchi K, Ito M (1997) Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem 272:12257–12260

    Article  CAS  PubMed  Google Scholar 

  26. Kawano Y, Fukata Y, Oshiro N, Amano M, Nakamura T, Ito M, Matsumura F, Inagaki M, Kaibuchi K (1999) Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J Cell Biol 147:1023–1038

    Article  CAS  PubMed  Google Scholar 

  27. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273:245–248

    Article  CAS  PubMed  Google Scholar 

  28. Mills JC, Stone NL, Erhardt J, Pittman RN (1998) Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. J Cell Biol 140:627–636

    Article  CAS  PubMed  Google Scholar 

  29. van der Heijden M, Versteilen AM, Sipkema P, van Nieuw Amerongen GP, Musters RJ, Groeneveld AB (2008) Rho-kinase-dependent F-actin rearrangement is involved in the inhibition of PI3-kinase/Akt during ischemia-reperfusion-induced endothelial cell apoptosis. Apoptosis 13:404–412

    Article  CAS  PubMed  Google Scholar 

  30. Chang J, Xie M, Shah VR, Schneider MD, Entman ML, Wei L, Schwartz RJ (2006) Activation of Rho-associated coiled-coil protein kinase 1 (ROCK-1) by caspase-3 cleavage plays an essential role in cardiac myocyte apoptosis. Proc Natl Acad Sci USA 103:14495–14500

    Article  CAS  PubMed  Google Scholar 

  31. Petrache I, Crow MT, Neuss M, Garcia JG (2003) Central involvement of Rho family GTPases in TNF-alpha-mediated bovine pulmonary endothelial cell apoptosis. Biochem Biophys Res Commun 306:244–249

    Article  CAS  PubMed  Google Scholar 

  32. Baudin B, Bruneel A, Bosselut N, Vaubourdolle M (2007) A protocol for isolation and culture of human umbilical vein endothelial cells. Nat Protoc 2:481–485

    Article  CAS  PubMed  Google Scholar 

  33. Huot J, Houle F, Rousseau S, Deschesnes RG, Shah GM, Landry J (1998) SAPK2/p38-dependent F-actin reorganization regulates early membrane blebbing during stress-induced apoptosis. J Cell Biol 143:1361–1373

    Article  CAS  PubMed  Google Scholar 

  34. Li H, Bergeron L, Cryns V, Pasternack MS, Zhu H, Shi L, Greenberg A, Yuan J (1997) Activation of caspase-2 in apoptosis. J Biol Chem 272:21010–21017

    Article  CAS  PubMed  Google Scholar 

  35. Matsui T, Maeda M, Doi Y, Yonemura S, Amano M, Kaibuchi K, Tsukita S, Tsukita S (1998) Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J Cell Biol 140:647–657

    Article  CAS  PubMed  Google Scholar 

  36. Hébert M, Potin S, Sebbagh M, Bertoglio J, Bréard J, Hamelin J (2008) Rho-ROCK-dependent ezrin-radixin-moesin phosphorylation regulates Fas-mediated apoptosis in Jurkat cells. J Immunol 181:5963–5973

    PubMed  Google Scholar 

  37. Charras GT, Hu CK, Coughlin M, Mitchison TJ (2006) Reassembly of contractile actin cortex in cell blebs. J Cell Biol 175:477–490

    Article  CAS  PubMed  Google Scholar 

  38. Sapet C, Simoncini S, Loriod B, Puthier D, Sampol J, Nguyen C, Dignat-George F, Anfosso F (2006) Thrombin-induced endothelial microparticle generation: identification of a novel pathway involving ROCK-II activation by caspase-2. Blood 108:1868–1876

    Article  CAS  PubMed  Google Scholar 

  39. Bortner CD, Gomez-Angelats M, Cidlowski JA (2001) Plasma membrane depolarization without repolarization is an early molecular event in anti-Fas-induced apoptosis. J Biol Chem 276:4304–4314

    Article  CAS  PubMed  Google Scholar 

  40. Penning LC, Denecker G, Vercammen D, Declercq W, Schipper RG, Vandenabeele P (2000) A role for potassium in TNF-induced apoptosis and gene-induction in human and rodent tumour cell lines. Cytokine 12:747–750

    Article  CAS  PubMed  Google Scholar 

  41. Xiao AY, Wang XQ, Yang A, Yu SP (2002) Slight impairment of Na+, K+-ATPase synergistically aggravates ceramide- and beta-amyloid-induced apoptosis in cortical neurons. Brain Res 955:253–259

    Article  CAS  PubMed  Google Scholar 

  42. Navarro-González JF, Mora C, Muros M, Jarque A, Herrera H, García J (2008) Association of tumor necrosis factor-alpha with early target organ damage in newly diagnosed patients with essential hypertension. J Hypertens 26:2168–2175

    Article  PubMed  Google Scholar 

  43. Imamura F, Mukai M, Ayaki M, Akedo H (2000) Y-27632, an inhibitor of Rho-associated protein kinase, suppresses tumor cell invasion via regulation of focal adhesion and focal adhesion kinase. Jpn J Cancer Res 91:811–816

    CAS  PubMed  Google Scholar 

  44. Nakajima M, Hayashi K, Egi Y, Katayama K, Amano Y, Uehata M, Ohtsuki M, Fujii A, Oshita K, Kataoka H, Chiba K, Goto N, Kondo T (2003) Effect of Wf-536, a novel ROCK inhibitor, against metastasis of B16 melanoma. Cancer Chemother Pharmacol 52:319–324

    Article  CAS  PubMed  Google Scholar 

  45. Croft DR, Sahai E, Mavria G, Li S, Tsai J, Lee WM, Marshall CJ, Olson MF (2004) Conditional ROCK activation in vivo induces tumor cell dissemination and angiogenesis. Cancer Res 64:8994–9001

    Article  CAS  PubMed  Google Scholar 

  46. Newman RA, Yang P, Pawlus AD, Block KI (2008) Cardiac glycosides as novel cancer therapeutic agents. Mol Interv 8:36–49

    Article  CAS  PubMed  Google Scholar 

  47. Hirohashi S, Kanai Y (2003) Cell adhesion system and human cancer morphogenesis. Cancer Sci 94:575–581

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by Gazi University Scientific Research Project Unit in the 02/2008-04 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Ark.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10495_2010_529_MOESM1_ESM.jpg

Supplementary Fig. 1 Schematic presentation of possible caspase-2 consensus sequence in Rock-2 C-terminus. Granzyme B consensus sequence and identification of a possible Rock-2 cleavage site in the Rock-2 C-terminus. Rock-2 is cleaved by granzyme B at the IGLD 1131 site, producing a ~130 kDa fragment. Possible caspase-2 cleavage sequence VDVAD is situated at position 1211–1215 (VTQTD). Cleavage by caspase-2 produces a ~140 kDa form of Rock-2. (JPEG 1228 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ark, M., Özdemir, A. & Polat, B. Ouabain-induced apoptosis and Rho kinase: a novel caspase-2 cleavage site and fragment of Rock-2. Apoptosis 15, 1494–1506 (2010). https://doi.org/10.1007/s10495-010-0529-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0529-1

Keywords

Navigation