Skip to main content
Log in

Ouabain-induced perturbations in intracellular ionic homeostasis regulate death receptor-mediated apoptosis

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apoptosis is defined by specific morphological and biochemical characteristics including cell shrinkage (termed apoptotic volume decrease), a process that results from the regulation of ion channels and plasma membrane transporter activity. The Na+–K+-ATPase is the predominant pump that controls cell volume and plasma membrane potential in cells and alterations in its function have been suggested to be associated with apoptosis. We report here that the Na+–K+-ATPase inhibitor ouabain, potentiates apoptosis in the human lymphoma Jurkat cells exposed to Fas ligand (FasL) or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but not other apoptotic agents such as H2O2, thapsigargin or UV-C implicating a role for the Na+–K+-ATPase in death receptor-induced apoptosis. Interestingly, ouabain also potentiated perturbations in cell Ca2+ homeostasis only in conjunction with the apoptotic inducer FasL but not TRAIL. Ouabain did not affect alterations in the intracellular Ca2+ levels in response to H2O2, thapsigargin or UV-C. FasL-induced alterations in Ca2+ were not abolished in Ca2+-free medium but incubation of cells with BAPTA-AM inhibited both Ca2+ perturbations and the ouabain-induced potentiation of FasL-induced apoptosis. Our data suggest that the impairment of the Na+–K+-ATPase activity during apoptosis is linked to perturbations in cell Ca2+ homeostasis that modulate apoptosis induced by the activation of Fas by FasL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fadeel B, Orrenius S (2005) Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med 258:479–517

    PubMed  CAS  Google Scholar 

  2. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    PubMed  CAS  Google Scholar 

  3. Khosravi-Far R, Esposti MD (2004) Death receptor signals to mitochondria. Cancer Biol Ther 3:1051–1057

    Article  PubMed  CAS  Google Scholar 

  4. Barnhart BC, Alappat EC, Peter ME (2003) The CD95 type I/type II model. Semin Immunol 15:185–193

    PubMed  CAS  Google Scholar 

  5. Ravagnan L, Roumier T, Kroemer G (2002) Mitochondria, the killer organelles and their weapons. J Cell Physiol 192:131–137

    PubMed  CAS  Google Scholar 

  6. Bras M, Queenan B, Susin SA (2005) Programmed cell death via mitochondria: different modes of dying. Biochemistry (Mosc) 70:231–239

    CAS  Google Scholar 

  7. Bortner CD, Cidlowski JA (2002) Apoptotic volume decrease and the incredible shrinking cell. Cell Death Differ 9:1307–1310

    PubMed  CAS  Google Scholar 

  8. Bortner CD, Hughes FM Jr, Cidlowski JA (1997) A primary role for K+ and Na+ efflux in the activation of apoptosis. J Biol Chem 272:32436–32442

    PubMed  CAS  Google Scholar 

  9. Hughes FM Jr, Bortner CD, Purdy GD, Cidlowski JA (1997) Intracellular K+ suppresses the activation of apoptosis in lymphocytes. J Biol Chem 272:30567–30576

    PubMed  CAS  Google Scholar 

  10. Franco R, Bortner CD, Cidlowski JA (2006) Potential roles of electrogenic ion transport and plasma membrane depolarization in apoptosis. J Membr Biol 209:43–58

    PubMed  CAS  Google Scholar 

  11. Lang F, Foller M, Lang K et al (2007) Cell volume regulatory ion channels in cell proliferation and cell death. Methods Enzymol 428:209–225

    PubMed  Google Scholar 

  12. Panayiotidis MI, Bortner CD, Cidlowski JA (2006) On the mechanism of ionic regulation of apoptosis: would the Na+/K+-ATPase please stand up? Acta Physiol (Oxf) 187:205–215

    CAS  Google Scholar 

  13. Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89:193–277

    PubMed  CAS  Google Scholar 

  14. Lingrel JB, Kuntzweiler T (1994) Na+, K(+)-ATPase. J Biol Chem 269:19659–19662

    PubMed  CAS  Google Scholar 

  15. Pierre SV, Xie Z (2006) The Na, K-ATPase receptor complex: its organization and membership. Cell Biochem Biophys 46:303–316

    PubMed  CAS  Google Scholar 

  16. Arrebola F, Zabiti S, Canizares FJ, Cubero MA, Crespo PV, Fernandez-Segura E (2005) Changes in intracellular sodium, chlorine, and potassium concentrations in staurosporine-induced apoptosis. J Cell Physiol 204:500–507

    PubMed  CAS  Google Scholar 

  17. Nobel CS, Aronson JK, van den Dobbelsteen DJ, Slater AF (2000) Inhibition of Na+/K(+)-ATPase may be one mechanism contributing to potassium efflux and cell shrinkage in CD95-induced apoptosis. Apoptosis 5:153–163

    PubMed  CAS  Google Scholar 

  18. Bortner CD, Gomez-Angelats M, Cidlowski JA (2001) Plasma membrane depolarization without repolarization is an early molecular event in anti-Fas-induced apoptosis. J Biol Chem 276:4304–4314

    PubMed  CAS  Google Scholar 

  19. Tang MJ, Cheng YR, Lin HH (1996) Role of apoptosis in growth and differentiation of proximal tubule cells in primary cultures. Biochem Biophys Res Commun 218:658–664

    PubMed  CAS  Google Scholar 

  20. Orlov SN, Pchejetski DV, Sarkissian SD et al (2003) [3H]-thymidine labelling of DNA triggers apoptosis potentiated by E1A-adenoviral protein. Apoptosis 8:199–208

    PubMed  CAS  Google Scholar 

  21. Yu SP (2003) Na(+), K(+)-ATPase: the new face of an old player in pathogenesis and apoptotic/hybrid cell death. Biochem Pharmacol 66:1601–1609

    PubMed  CAS  Google Scholar 

  22. Wang XQ, Xiao AY, Sheline C et al (2003) Apoptotic insults impair Na+, K+-ATPase activity as a mechanism of neuronal death mediated by concurrent ATP deficiency and oxidant stress. J Cell Sci 116:2099–2110

    PubMed  CAS  Google Scholar 

  23. Wang XQ, Xiao AY, Yang A, LaRose L, Wei L, Yu SP (2003) Block of Na+, K+-ATPase and induction of hybrid death by 4-aminopyridine in cultured cortical neurons. J Pharmacol Exp Ther 305:502–506

    PubMed  CAS  Google Scholar 

  24. Nowak G (2002) Protein kinase C-alpha and ERK1/2 mediate mitochondrial dysfunction, decreases in active Na+ transport, and cisplatin-induced apoptosis in renal cells. J Biol Chem 277:43377–43388

    PubMed  CAS  Google Scholar 

  25. Mann CL, Bortner CD, Jewell CM, Cidlowski JA (2001) Glucocorticoid-induced plasma membrane depolarization during thymocyte apoptosis: association with cell shrinkage and degradation of the Na(+)/K(+)-adenosine triphosphatase. Endocrinology 142:5059–5068

    PubMed  CAS  Google Scholar 

  26. Chueh SC, Guh JH, Chen J, Lai MK, Teng CM (2001) Dual effects of ouabain on the regulation of proliferation and apoptosis in human prostatic smooth muscle cells. J Urol 166:347–353

    PubMed  CAS  Google Scholar 

  27. Hennion JP, el-Masri MA, Huff MO, el-Mailakh RS (2002) Evaluation of neuroprotection by lithium and valproic acid against ouabain-induced cell damage. Bipolar Disord 4:201–206

    PubMed  CAS  Google Scholar 

  28. Kurosawa M, Tani Y, Nishimura S, Numazawa S, Yoshida T (2001) Distinct PKC isozymes regulate bufalin-induced differentiation and apoptosis in human monocytic cells. Am J Physiol Cell Physiol 280:C459–C464

    PubMed  CAS  Google Scholar 

  29. McConkey DJ, Lin Y, Nutt LK, Ozel HZ, Newman RA (2000) Cardiac glycosides stimulate Ca2+ increases and apoptosis in androgen-independent, metastatic human prostate adenocarcinoma cells. Cancer Res 60:3807–3812

    PubMed  CAS  Google Scholar 

  30. Olej B, dos Santos NF, Leal L, Rumjanek VM (1998) Ouabain induces apoptosis on PHA-activated lymphocytes. Biosci Rep 18:1–7

    PubMed  CAS  Google Scholar 

  31. Stelmashook EV, Weih M, Zorov D, Victorov I, Dirnagl U, Isaev N (1999) Short-term block of Na+/K+-ATPase in neuro-glial cell cultures of cerebellum induces glutamate dependent damage of granule cells. FEBS Lett 456:41–44

    PubMed  CAS  Google Scholar 

  32. Watabe M, Masuda Y, Nakajo S, Yoshida T, Kuroiwa Y, Nakaya K (1996) The cooperative interaction of two different signaling pathways in response to bufalin induces apoptosis in human leukemia U937 cells. J Biol Chem 271:14067–14072

    PubMed  CAS  Google Scholar 

  33. Kawazoe N, Aiuchi T, Masuda Y, Nakajo S, Nakaya K (1999) Induction of apoptosis by bufalin in human tumor cells is associated with a change of intracellular concentration of Na+ ions. J Biochem (Tokyo) 126:278–286

    CAS  Google Scholar 

  34. Lang H, Schulte BA, Schmiedt RA (2005) Ouabain induces apoptotic cell death in type I spiral ganglion neurons, but not type II neurons. J Assoc Res Otolaryngol 6:63–74

    PubMed  CAS  Google Scholar 

  35. Huang YT, Chueh SC, Teng CM, Guh JH (2004) Investigation of ouabain-induced anticancer effect in human androgen-independent prostate cancer PC-3 cells. Biochem Pharmacol 67:727–733

    PubMed  CAS  Google Scholar 

  36. Schmiedt RA, Okamura HO, Lang H, Schulte BA (2002) Ouabain application to the round window of the gerbil cochlea: a model of auditory neuropathy and apoptosis. J Assoc Res Otolaryngol 3:223–233

    PubMed  CAS  Google Scholar 

  37. Xiao AY, Wei L, Xia S, Rothman S, Yu SP (2002) Ionic mechanism of ouabain-induced concurrent apoptosis and necrosis in individual cultured cortical neurons. J Neurosci 22:1350–1362

    PubMed  CAS  Google Scholar 

  38. Penning LC, Denecker G, Vercammen D, Declercq W, Schipper RG, Vandenabeele P (2000) A role for potassium in TNF-induced apoptosis and gene-induction in human and rodent tumour cell lines. Cytokine 12:747–750

    PubMed  CAS  Google Scholar 

  39. Xiao AY, Wang XQ, Yang A, Yu SP (2002) Slight impairment of Na+, K+-ATPase synergistically aggravates ceramide- and beta-amyloid-induced apoptosis in cortical neurons. Brain Res 955:253–259

    PubMed  CAS  Google Scholar 

  40. Esteves MB, Marques-Santos LF, Affonso-Mitidieri OR, Rumjanek VM (2005) Ouabain exacerbates activation-induced cell death in human peripheral blood lymphocytes. An Acad Bras Cienc 77:281–292

    PubMed  CAS  Google Scholar 

  41. Sun XM, Bratton SB, Butterworth M, MacFarlane M, Cohen GM (2002) Bcl-2 and Bcl-xL inhibit CD95-mediated apoptosis by preventing mitochondrial release of Smac/DIABLO and subsequent inactivation of X-linked inhibitor-of-apoptosis protein. J Biol Chem 277:11345–11351

    PubMed  CAS  Google Scholar 

  42. Shiffer Z, Zurgil N, Shafran Y, Deutsch M (2001) Analysis of laser scattering pattern as an early measure of apoptosis. Biochem Biophys Res Commun 289:1320–1327

    PubMed  CAS  Google Scholar 

  43. Bortner CD, Cidlowski JA (1996) Absence of volume regulatory mechanisms contributes to the rapid activation of apoptosis in thymocytes. Am J Physiol 271:C950–C961

    PubMed  CAS  Google Scholar 

  44. Bortner CD, Cidlowski JA (2003) Uncoupling cell shrinkage from apoptosis reveals that Na + influx is required for volume loss during programmed cell death. J Biol Chem 278:39176–39184

    PubMed  CAS  Google Scholar 

  45. Akimova OA, Hamet P, Orlov SN (2008) [Na+]i/[K+]i -independent death of ouabain-treated renal epithelial cells is not mediated by Na+, K+-ATPase internalization and de novo gene expression. Pflugers Arch 455:711–719

    PubMed  CAS  Google Scholar 

  46. Orlov SN, Hamet P (2006) The death of cardiotonic steroid-treated cells: evidence of Na + i, K + i-independent H + i-sensitive signalling. Acta Physiol (Oxf) 187:231–240

    CAS  Google Scholar 

  47. Pchejetski D, Taurin S, Der Sarkissian S et al (2003) Inhibition of Na+, K+-ATPase by ouabain triggers epithelial cell death independently of inversion of the [Na+]i/[K+]i ratio. Biochem Biophys Res Commun 301:735–744

    PubMed  CAS  Google Scholar 

  48. Ihenetu K, Qazzaz HM, Crespo F, Fernandez-Botran R, Valdes R Jr (2007) Digoxin-like immunoreactive factors induce apoptosis in human acute T-cell lymphoblastic leukemia. Clin Chem 53:1315–1322

    PubMed  CAS  Google Scholar 

  49. Dussmann H, Rehm M, Kogel D, Prehn JH (2003) Outer mitochondrial membrane permeabilization during apoptosis triggers caspase-independent mitochondrial and caspase-dependent plasma membrane potential depolarization: a single-cell analysis. J Cell Sci 116:525–536

    PubMed  CAS  Google Scholar 

  50. Sen N, Das BB, Ganguly A, Mukherjee T, Bandyopadhyay S, Majumder HK (2004) Camptothecin-induced imbalance in intracellular cation homeostasis regulates programmed cell death in unicellular hemoflagellate Leishmania donovani. J Biol Chem 279:52366–52375

    PubMed  CAS  Google Scholar 

  51. Dussmann H, Kogel D, Rehm M, Prehn JH (2003) Mitochondrial membrane permeabilization and superoxide production during apoptosis. A single-cell analysis. J Biol Chem 278:12645–12649

    PubMed  Google Scholar 

  52. Gilbert M, Knox S (1997) Influence of Bcl-2 overexpression on Na+/K(+)-ATPase pump activity: correlation with radiation-induced programmed cell death. J Cell Physiol 171:299–304

    PubMed  CAS  Google Scholar 

  53. Gilbert MS, Saad AH, Rupnow BA, Knox SJ (1996) Association of BCL-2 with membrane hyperpolarization and radioresistance. J Cell Physiol 168:114–122

    PubMed  CAS  Google Scholar 

  54. Wang XQ, Yu SP (2005) Novel regulation of Na, K-ATPase by Src tyrosine kinases in cortical neurons. J Neurochem 93:1515–1523

    PubMed  CAS  Google Scholar 

  55. Thevenod F, Friedmann JM (1999) Cadmium-mediated oxidative stress in kidney proximal tubule cells induces degradation of Na+/K(+)-ATPase through proteasomal and endo-/lysosomal proteolytic pathways. Faseb J 13:1751–1761

    PubMed  CAS  Google Scholar 

  56. Cimen B, Turkozkan N, Seven I, Unlu A, Karasu C (2004) Impaired Na+, K+-ATPase activity as a mechanism of reactive nitrogen species-induced cytotoxicity in guinea pig liver exposed to lipopolysaccharides. Mol Cell Biochem 259:53–57

    PubMed  CAS  Google Scholar 

  57. Yin W, Cheng W, Shen W et al (2007) Impairment of Na(+), K(+)-ATPase in CD95(APO-1)-induced human T-cell leukemia cell apoptosis mediated by glutathione depletion and generation of hydrogen peroxide. Leukemia 21:1669–1678

    PubMed  CAS  Google Scholar 

  58. Therien AG, Blostein R (2000) Mechanisms of sodium pump regulation. Am J Physiol Cell Physiol 279:C541–C566

    PubMed  CAS  Google Scholar 

  59. Lee Y, Shacter E (2001) Fas aggregation does not correlate with Fas-mediated apoptosis. J Immunol 167:82–89

    PubMed  CAS  Google Scholar 

  60. Velthuis JH, Rouschop KM, De Bont HJ, Mulder GJ, Nagelkerke JF (2002) Distinct intracellular signaling in tumor necrosis factor-related apoptosis-inducing ligand- and CD95 ligand-mediated apoptosis. J Biol Chem 277:24631–24637

    PubMed  CAS  Google Scholar 

  61. Werner AB, de Vries E, Tait SW, Bontjer I, Borst J (2002) TRAIL receptor and CD95 signal to mitochondria via FADD, caspase-8/10, Bid, and Bax but differentially regulate events downstream from truncated Bid. J Biol Chem 277:40760–40767

    PubMed  CAS  Google Scholar 

  62. Balasubramanyam M, Rohowsky-Kochan C, Reeves JP, Gardner JP (1994) Na+/Ca2+ exchange-mediated calcium entry in human lymphocytes. J Clin Invest 94:2002–2008

    PubMed  CAS  Google Scholar 

  63. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    PubMed  CAS  Google Scholar 

  64. Golovina VA, Song H, James PF, Lingrel JB, Blaustein MP (2003) Na+ pump alpha 2-subunit expression modulates Ca2+ signaling. Am J Physiol Cell Physiol 284:C475–C486

    PubMed  CAS  Google Scholar 

  65. Zhang L, Zhang Z, Guo H, Wang Y (2008) Na+/K+-ATPase-mediated signal transduction and Na+/K+-ATPase regulation. Fundam Clin Pharmacol 22:615–621

    PubMed  CAS  Google Scholar 

  66. Tian J, Xie ZJ (2008) The Na-K-ATPase and calcium-signaling microdomains. Physiology (Bethesda) 23:205–211

    CAS  Google Scholar 

  67. Reuter H, Henderson SA, Han T, Ross RS, Goldhaber JI, Philipson KD (2002) The Na+-Ca2+ exchanger is essential for the action of cardiac glycosides. Circ Res 90:305–308

    PubMed  CAS  Google Scholar 

  68. Echevarria-Lima J, de Araujo EG, de Meis L, Rumjanek VM (2003) Ca2+ mobilization induced by ouabain in thymocytes involves intracellular and extracellular Ca2+ pools. Hypertension 41:1386–1392

    PubMed  CAS  Google Scholar 

  69. Swift F, Birkeland JA, Tovsrud N et al (2008) Altered Na+/Ca2+-exchanger activity due to downregulation of Na+/K+-ATPase alpha2-isoform in heart failure. Cardiovasc Res 78:71–78

    PubMed  CAS  Google Scholar 

  70. Lynch RM, Weber CS, Nullmeyer KD, Moore ED, Paul RJ (2008) Clearance of store-released Ca2+ by the Na+-Ca2+ exchanger is diminished in aortic smooth muscle from Na+-K+-ATPase alpha 2-isoform gene-ablated mice. Am J Physiol Heart Circ Physiol 294:H1407–H1416

    PubMed  CAS  Google Scholar 

  71. Altamirano J, Li Y, DeSantiago J, Piacentino V III, Houser SR, Bers DM (2006) The inotropic effect of cardioactive glycosides in ventricular myocytes requires Na+-Ca2+ exchanger function. J Physiol 575:845–854

    PubMed  CAS  Google Scholar 

  72. Rizzuto R, Pinton P, Ferrari D et al (2003) Calcium and apoptosis: facts and hypotheses. Oncogene 22:8619–8627

    PubMed  CAS  Google Scholar 

  73. Samraj AK, Keil E, Ueffing N, Schulze-Osthoff K, Schmitz I (2006) Loss of caspase-9 provides genetic evidence for the type I/II concept of CD95-mediated apoptosis. J Biol Chem 281:29652–29659

    PubMed  CAS  Google Scholar 

  74. Scoltock AB, Bortner CD, St JBG, Putney JW Jr, Cidlowski JA (2000) A selective requirement for elevated calcium in DNA degradation, but not early events in anti-Fas-induced apoptosis. J Biol Chem 275:30586–30596

    PubMed  CAS  Google Scholar 

  75. Oshimi Y, Miyazaki S (1995) Fas antigen-mediated DNA fragmentation and apoptotic morphologic changes are regulated by elevated cytosolic Ca2+ level. J Immunol 154:599–609

    PubMed  CAS  Google Scholar 

  76. Wozniak AL, Wang X, Stieren ES, Scarbrough SG, Elferink CJ, Boehning D (2006) Requirement of biphasic calcium release from the endoplasmic reticulum for Fas-mediated apoptosis. J Cell Biol 175:709–714

    PubMed  CAS  Google Scholar 

  77. Jayaraman T, Marks AR (1997) T cells deficient in inositol 1,4,5-trisphosphate receptor are resistant to apoptosis. Mol Cell Biol 17:3005–3012

    PubMed  CAS  Google Scholar 

  78. Hueber AO, Zornig M, Bernard AM, Chautan M, Evan G (2000) A dominant negative Fas-associated death domain protein mutant inhibits proliferation and leads to impaired calcium mobilization in both T-cells and fibroblasts. J Biol Chem 275:10453–10462

    PubMed  CAS  Google Scholar 

  79. Aizman O, Uhlen P, Lal M, Brismar H, Aperia A (2001) Ouabain, a steroid hormone that signals with slow calcium oscillations. Proc Natl Acad Sci USA 98:13420–13424

    PubMed  CAS  Google Scholar 

  80. Miyakawa-Naito A, Uhlen P, Lal M et al (2003) Cell signaling microdomain with Na, K-ATPase and inositol 1,4,5-trisphosphate receptor generates calcium oscillations. J Biol Chem 278:50355–50361

    PubMed  CAS  Google Scholar 

  81. Yuan Z, Cai T, Tian J, Ivanov AV, Giovannucci DR, Xie Z (2005) Na/K-ATPase tethers phospholipase C and IP3 receptor into a calcium-regulatory complex. Mol Biol Cell 16:4034–4045

    PubMed  CAS  Google Scholar 

  82. Khan MT, Bhanumathy CD, Schug ZT, Joseph SK (2007) Role of inositol 1,4,5-trisphosphate receptors in apoptosis in DT40 lymphocytes. J Biol Chem 282:32983–32990

    PubMed  CAS  Google Scholar 

  83. Orlov SN, Taurin S, Thorin-Trescases N, Dulin NO, Tremblay J, Hamet P (2000) Inversion of the intracellular Na(+)/K(+) ratio blocks apoptosis in vascular smooth muscle cells by induction of RNA synthesis. Hypertension 35:1062–1068

    PubMed  CAS  Google Scholar 

  84. Orlov SN, Thorin-Trescases N, Kotelevtsev SV, Tremblay J, Hamet P (1999) Inversion of the intracellular Na+/K+ ratio blocks apoptosis in vascular smooth muscle at a site upstream of caspase-3. J Biol Chem 274:16545–16552

    PubMed  CAS  Google Scholar 

  85. Falciola J, Volet B, Anner RM, Moosmayer M, Lacotte D, Anner BM (1994) Role of cell membrane Na, K-ATPase for survival of human lymphocytes in vitro. Biosci Rep 14:189–204

    PubMed  CAS  Google Scholar 

  86. Xu JW, Jin RM, Li EQ, Wang YR, Bai Y (2009) Signal pathways in ouabain-induced proliferation of leukemia cells. World J Pediatr 5:140–145

    PubMed  CAS  Google Scholar 

  87. Akimova OA, Mongin AA, Hamet P, Orlov SN (2006) The rapid decline of MTT reduction is not a marker of death signaling in ouabain-treated cells. Cell Mol Biol (Noisy-le-grand) 52:71–77

    CAS  Google Scholar 

  88. Orlov SN, Thorin-Trescases N, Pchejetski D et al (2004) Na+/K+ pump and endothelial cell survival: [Na+]i/[K+]i-independent necrosis triggered by ouabain, and protection against apoptosis mediated by elevation of [Na+]i. Pflugers Arch 448:335–345

    PubMed  CAS  Google Scholar 

  89. Trevisi L, Visentin B, Cusinato F, Pighin I, Luciani S (2004) Antiapoptotic effect of ouabain on human umbilical vein endothelial cells. Biochem Biophys Res Commun 321:716–721

    PubMed  CAS  Google Scholar 

  90. Isaev NK, Stelmashook EV, Halle A et al (2000) Inhibition of Na(+), K(+)-ATPase activity in cultured rat cerebellar granule cells prevents the onset of apoptosis induced by low potassium. Neurosci Lett 283:41–44

    PubMed  CAS  Google Scholar 

  91. Taurin S, Seyrantepe V, Orlov SN et al (2002) Proteome analysis and functional expression identify mortalin as an antiapoptotic gene induced by elevation of [Na+]i/[K+]i ratio in cultured vascular smooth muscle cells. Circ Res 91:915–922

    PubMed  CAS  Google Scholar 

  92. Zhou X, Jiang G, Zhao A, Bondeva T, Hirszel P, Balla T (2001) Inhibition of Na, K-ATPase activates PI3 kinase and inhibits apoptosis in LLC-PK1 cells. Biochem Biophys Res Commun 285:46–51

    PubMed  CAS  Google Scholar 

  93. de Rezende Correa G, Araujo dos Santos A, Frederico Leite Fontes C, Giestal de Araujo E (2005) Ouabain induces an increase of retinal ganglion cell survival in vitro: the involvement of protein kinase C. Brain Res 1049:89–94

    PubMed  Google Scholar 

  94. Golden WC, Martin LJ (2006) Low-dose ouabain protects against excitotoxic apoptosis and up-regulates nuclear Bcl-2 in vivo. Neuroscience 137:133–144

    PubMed  CAS  Google Scholar 

  95. Pshezhetsky AV (2007) Proteomic analysis of vascular smooth muscle cells treated with ouabain. Methods Mol Biol 357:253–269

    PubMed  CAS  Google Scholar 

  96. Liu J, Tian J, Haas M, Shapiro JI, Askari A, Xie Z (2000) Ouabain interaction with cardiac Na+/K+-ATPase initiates signal cascades independent of changes in intracellular Na+ and Ca2+ concentrations. J Biol Chem 275:27838–27844

    PubMed  CAS  Google Scholar 

  97. Akimova OA, Bagrov AY, Lopina OD et al (2005) Cardiotonic steroids differentially affect intracellular Na+ and [Na+]i/[K+]i-independent signaling in C7-MDCK cells. J Biol Chem 280:832–839

    PubMed  CAS  Google Scholar 

  98. Akimova OA, Lopina OD, Rubtsov AM et al (2009) Death of ouabain-treated renal epithelial cells: evidence for p38 MAPK-mediated Na (i) (+) /K (i) (+) -independent signaling. Apoptosis 14:1266–1273

    PubMed  CAS  Google Scholar 

  99. Contreras RG, Shoshani L, Flores-Maldonado C, Lazaro A, Cereijido M (1999) Relationship between Na(+), K(+)-ATPase and cell attachment. J Cell Sci 112(Pt 23):4223–4232

    PubMed  CAS  Google Scholar 

  100. Giunta C, Cavaletto M, Pergola L, Pessione E, Bracchino P (1992) Modulation of Na+/K+ pump in intact erythrocytes by cardioglycosides, steroid hormones and ouabain-like compounds. Gen Pharmacol 23:683–687

    PubMed  CAS  Google Scholar 

  101. Alvarez-Leefmans FJ, Cruzblanca H, Gamino SM, Altamirano J, Nani A, Reuss L (1994) Transmembrane ion movements elicited by sodium pump inhibition in Helix aspersa neurons. J Neurophysiol 71:1787–1796

    PubMed  CAS  Google Scholar 

  102. Alvarez-Leefmans FJ, Gamino SM, Reuss L (1992) Cell volume changes upon sodium pump inhibition in Helix aspersa neurones. J Physiol 458:603–619

    PubMed  CAS  Google Scholar 

  103. Armstrong CM (2003) The Na/K pump, Cl ion, and osmotic stabilization of cells. Proc Natl Acad Sci USA 100:6257–6262

    PubMed  CAS  Google Scholar 

  104. Dierkes PW, Wusten HJ, Klees G, Muller A, Hochstrate P (2006) Ionic mechanism of ouabain-induced swelling of leech Retzius neurons. Pflugers Arch 452:25–35

    PubMed  CAS  Google Scholar 

  105. Akimova OA, Lopina OD, Rubtsov AM et al (2009) Death of ouabain-treated renal epithelial cells: evidence for p38 MAPK-mediated Na (i) (+)/K (i) (+)-independent signaling. Apoptosis 14:1266–1273

    PubMed  CAS  Google Scholar 

  106. Okada Y, Shimizu T, Maeno E, Tanabe S, Wang X, Takahashi N (2006) Volume-sensitive chloride channels involved in apoptotic volume decrease and cell death. J Membr Biol 209:21–29

    PubMed  CAS  Google Scholar 

  107. Szabo I, Lepple-Wienhues A, Kaba KN, Zoratti M, Gulbins E, Lang F (1998) Tyrosine kinase-dependent activation of a chloride channel in CD95-induced apoptosis in T lymphocytes. Proc Natl Acad Sci USA 95:6169–6174

    PubMed  CAS  Google Scholar 

  108. Franco R, DeHaven WI, Sifre MI, Bortner CD, Cidlowski JA (2008) Glutathione depletion and disruption of intracellular ionic homeostasis regulate lymphoid cell apoptosis. J Biol Chem 283:36071–36087

    PubMed  CAS  Google Scholar 

  109. Storey NM, Gomez-Angelats M, Bortner CD, Armstrong DL, Cidlowski JA (2003) Stimulation of Kv1.3 potassium channels by death receptors during apoptosis in Jurkat T lymphocytes. J Biol Chem 278:33319–33326

    PubMed  CAS  Google Scholar 

  110. Friis MB, Friborg CR, Schneider L et al (2005) Cell shrinkage as a signal to apoptosis in NIH 3T3 fibroblasts. J Physiol 567:427–443

    PubMed  CAS  Google Scholar 

  111. Orlov SN, Pchejetski D, Taurin S et al (2004) Apoptosis in serum-deprived vascular smooth muscle cells: evidence for cell volume-independent mechanism. Apoptosis 9:55–66

    PubMed  CAS  Google Scholar 

  112. Fumarola C, Zerbini A, Guidotti GG (2001) Glutamine deprivation-mediated cell shrinkage induces ligand-independent CD95 receptor signaling and apoptosis. Cell Death Differ 8:1004–1013

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. Elizabeth Murphy and Dr. Gary St. J. Bird for the internal review and comments on this manuscript. We appreciate MS. Maria Sifre, for technical support in the flow cytometry studies. The research was supported by the Intramural Research Program of the NIH/ NIEHS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Cidlowski.

Additional information

Mihalis I. Panayiotidis and Rodrigo Franco contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panayiotidis, M.I., Franco, R., Bortner, C.D. et al. Ouabain-induced perturbations in intracellular ionic homeostasis regulate death receptor-mediated apoptosis. Apoptosis 15, 834–849 (2010). https://doi.org/10.1007/s10495-010-0494-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0494-8

Keywords

Navigation