Skip to main content
Log in

Apoptosis and its functional significance in molluscs

  • Unusual Model Systems for Cell Death Research
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Programmed cell death leading to apoptosis is essential for normal development and homeostasis in plants and throughout the animal kingdom. Although there are differences in apoptotic mechanisms between lower animals and vertebrates, crucial biochemical components of the programmed cell death pathways remained remarkably conserved throughout evolution. Despite decades of studies on the neurobiology and development of mollusks, comparatively little is known about the mechanisms of apoptosis in this phylum. In this review, an attempt is made to summarize data obtained on mollusks so far, and to discuss the molecular mechanisms, the functional and ecological significance of apoptosis and the advantages of snail preparations as tools for programmed cell death research. A definitive comparison of the data obtained on mollusks with those obtained on the more widely studied vertebrates, will contribute to the better understanding of the apoptotic process in general and of its evolutionary development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305(5684):626–629

    Article  PubMed  CAS  Google Scholar 

  2. Pollard TD, Earnshaw WC (2002) Cell biology. Saunders, New York, pp 762–782

    Google Scholar 

  3. Kroemer G, Galluzzi L, Vandenabeele P et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16(1):3–11

    Article  PubMed  CAS  Google Scholar 

  4. Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16(6):663–669

    Article  PubMed  CAS  Google Scholar 

  5. Lockshin RA, Zakeri Z (2004) Apoptosis, autophagy, and more. Int J Biochem Cell Biol 36(12):2405–2419

    Article  PubMed  CAS  Google Scholar 

  6. Fulda S, Debatin KM (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25(34):4798–4811

    Article  PubMed  CAS  Google Scholar 

  7. Krantic S, Mechawar N, Reix S et al (2005) Molecular basis of programmed cell death involved in neurodegeneration. Trends Neurosci 28(12):670–676

    PubMed  CAS  Google Scholar 

  8. Franco R, Sanchez-Olea R, Reyes-Reyes EM et al (2009) Environmental toxicity, oxidative stress and apoptosis: menage a trois. Mutat Res 674(1–2):3–22

    PubMed  CAS  Google Scholar 

  9. Schaumburg F, Hippe D, Vutova P et al (2006) Pro- and anti-apoptotic activities of protozoan parasites. Parasitology 132(Suppl):S69–S85

    Article  PubMed  CAS  Google Scholar 

  10. Sokolova IM (2009) Apoptosis in molluscan immune defense. Invert Surviv J 6:49–58

    Google Scholar 

  11. Russo J, Madec L, Brehelin M (2008) Effect of a toxicant on phagocytosis pathways in the freshwater snail Lymnaea stagnalis. Cell Tissue Res 333(1):147–158

    Article  PubMed  CAS  Google Scholar 

  12. Russo J, Madec L (2007) Haemocyte apoptosis as a general cellular immune response of the snail, Lymnaea stagnalis, to a toxicant. Cell Tissue Res 328(2):431–441

    Article  PubMed  CAS  Google Scholar 

  13. van den Eijnde SM, Boshart L, Baehrecke EH et al (1998) Cell surface exposure of phosphatidylserine during apoptosis is phylogenetically conserved. Apoptosis 3(1):9–16

    Article  PubMed  Google Scholar 

  14. Cima F, Ballarin L (1999) TBT-induced apoptosis in tunicate haemocytes. Appl Organomet Chem 13(10):697–703

    Article  CAS  Google Scholar 

  15. Pirger Z, Elekes K, Kiss T (2004) Functional morphology of the salivary gland of the snail, Helix pomatia: a histochemical and immunocytochemical study. Acta Biol Hung 55(1–4):221–232

    Article  PubMed  Google Scholar 

  16. Terahara K, Takahashi KG, Mori K (2005) Pacific oyster hemocytes undergo apoptosis following cell-adhesion mediated by integrin-like molecules. Comp Biochem Physiol A Mol Integr Physiol 141(2):215–222

    Article  PubMed  CAS  Google Scholar 

  17. Serfozo Z, Elekes K (2009) Lectin-binding glycoproteins in the developing and adult snail CNS. Brain Struct Funct. doi: 10.1007/s00429-00009-00229-00421)

  18. Ottaviani E, Malagoli D, Franceschi C (2007) Common evolutionary origin of the immune and neuroendocrine systems: from morphological and functional evidence to in silico approaches. Trends Immunol 28(11):497–502

    Article  PubMed  CAS  Google Scholar 

  19. Lacoste A, Cueff A, Poulet SA (2002) P35-sensitive caspases, MAP kinases and Rho modulate beta-adrenergic induction of apoptosis in mollusc immune cells. J Cell Sci 115(Pt 4):761–768

    PubMed  CAS  Google Scholar 

  20. Gaitanaki C, Kefaloyianni E, Marmari A et al (2004) Various stressors rapidly activate the p38-MAPK signaling pathway in Mytilus galloprovincialis (Lam.). Mol Cell Biochem 260(1–2):119–127

    Article  PubMed  CAS  Google Scholar 

  21. Aladaileh S, Mohammad MG, Ferrari B et al (2008) In vitro effects of noradrenaline on Sydney rock oyster (Saccostrea glomerata) hemocytes. Comp Biochem Physiol A Mol Integr Physiol 151(4):691–697

    Article  PubMed  CAS  Google Scholar 

  22. Sunila I, LaBanca J (2003) Apoptosis in the pathogenesis of infectious diseases of the eastern oyster Crassostrea virginica. Dis Aquat Organ 56(2):163–170

    Article  PubMed  Google Scholar 

  23. Goedken M, Morsey B, Sunila I et al (2005) The effects of temperature and salinity on apoptosis of Crassostrea virginica hemocytes and Perkinsus marinus. J Shellfish Res 24(1):177–183

    Google Scholar 

  24. McFall-Ngai MJ (1999) Consequences of evolving with bacterial symbionts: insights from the squid-vibrio associations. Annu Rev Ecol Syst 30:235–256

    Article  Google Scholar 

  25. Takahashi KG, Mori K (2000) NADPH oxidase-like activity in hemocytes of the Pacific oyster Crassostrea gigas. Fish Patol 35:15–19

    CAS  Google Scholar 

  26. Terahara K, Takahashi KG (2008) Mechanisms and immunological roles of apoptosis in molluscs. Curr Pharm Des 14(2):131–137

    Article  PubMed  CAS  Google Scholar 

  27. Zhu B, Wu X (2008) Identification of outer membrane protein ompR from rickettsia-like organism and induction of immune response in Crassostrea ariakensis. Mol Immunol 45(11):3198–3204

    Article  PubMed  CAS  Google Scholar 

  28. Koropatnick TA, Kimbell JR, McFall-Ngai MJ (2007) Responses of host hemocytes during the initiation of the squid-vibrio symbiosis. Biol Bull 212(1):29–39

    Article  PubMed  Google Scholar 

  29. Pruski AM, Dixon DR (2002) Effects of cadmium on nuclear integrity and DNA repair efficiency in the gill cells of Mytilus edulis L. Aquat Toxicol 57(3):127–137

    Article  PubMed  CAS  Google Scholar 

  30. Lannig G, Flores JF, Sokolova IM (2006) Temperature-dependent stress response in oysters, Crassostrea virginica: Pollution reduces temperature tolerance in oysters. Aquat Toxicol 79(3):278–287

    Article  PubMed  CAS  Google Scholar 

  31. Abele D, Heise K, Portner HO et al (2002) Temperature-dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria. J Exp Biol 205(Pt 13):1831–1841

    PubMed  CAS  Google Scholar 

  32. Sokolova IM, Evans S, Hughes FM (2004) Cadmium-induced apoptosis in oyster hemocytes involves disturbance of cellular energy balance but no mitochondrial permeability transition. J Exp Biol 207(Pt 19):3369–3380

    Article  PubMed  CAS  Google Scholar 

  33. Actis AB, Lampe PD, Eynard AR (2002) Cellular basis and clinical implications of biological markers in salivary tissues: their topological distribution in murine submandibular gland. Oral Oncol 38(5):441–449

    Article  PubMed  CAS  Google Scholar 

  34. Moura KRS, Terra WR, Ribeiro AF (2004) The functional organization of the salivary gland of Biomphalaria straminea (Gastropoda: Planorbiade): secretory mechanisms and enzymatic determinations. J MollStud 70:21–29

    Google Scholar 

  35. Pirger Z, Elekes K, Kiss T (2006) Electrical properties and cell-to-cell communication of the salivary gland cells of the snail, Helix pomatia. Comp Biochem Physiol A Mol Integr Physiol 145(1):7–19

    Article  PubMed  CAS  Google Scholar 

  36. Hossini AM, Eberle J (2008) Apoptosis induction by Bcl-2 proteins independent of the BH3 domain. Biochem Pharmacol 76(11):1612–1619

    Article  PubMed  CAS  Google Scholar 

  37. Pirger Z, Racz B, Kiss T (2009) Dopamine-induced programmed cell death is associated with cytochrome c release and caspase-3 activation in snail salivary gland cells. Biol Cell 101(2):105–116

    Article  PubMed  CAS  Google Scholar 

  38. Wang X, Xiao AY, Ichinose T et al (2000) Effects of tetraethylammonium analogs on apoptosis and membrane currents in cultured cortical neurons. J Pharmacol Exp Ther 295(2):524–530

    PubMed  CAS  Google Scholar 

  39. Jablonski EM, Webb AN, McConnell NA et al (2004) Plasma membrane aquaporin activity can affect the rate of apoptosis but is inhibited after apoptotic volume decrease. Am J Physiol Cell Physiol 286(4):C975–C985

    Article  PubMed  CAS  Google Scholar 

  40. Yu SP, Canzoniero LM, Choi DW (2001) Ion homeostasis and apoptosis. Curr Opin Cell Biol 13(4):405–411

    Article  PubMed  CAS  Google Scholar 

  41. Bravarenko NI, Onufriev MV, Stepanichev MY et al (2006) Caspase-like activity is essential for long-term synaptic plasticity in the terrestrial snail Helix. Eur J Neurosci 23(1):129–140

    Article  PubMed  CAS  Google Scholar 

  42. Raj D, Brash DE, Grossman D (2006) Keratinocyte apoptosis in epidermal development and disease. J Invest Dermatol 126(2):243–257

    Article  PubMed  CAS  Google Scholar 

  43. Mathias S, Pena LA, Kolesnick RN (1998) Signal transduction of stress via ceramide. Biochem J 335(Pt 3):465–480

    PubMed  CAS  Google Scholar 

  44. Pirger Z, Nemeth J, Hiripi L et al (2008) PACAP has anti-apoptotic effect in the salivary gland of an invertebrate species, Helix pomatia. J Mol Neurosci 36(1–3):105–114

    Article  PubMed  CAS  Google Scholar 

  45. Hernadi L, Pirger Z, Kiss T et al (2008) The presence and distribution of pituitary adenylate cyclase activating polypeptide and its receptor in the snail Helix pomatia. Neurosci 155(2):387–402

    Article  CAS  Google Scholar 

  46. Roszer T, Kappelmayer J, Nagy GG et al (2006) The neuropeptide FMRFamide can protect cells against apoptosis in the snail digestive gland. Apoptosis 11(2):173–182

    Article  PubMed  CAS  Google Scholar 

  47. Venkatachalam S, Denissenko MF, Alvi N et al (1993) Rapid activation of apoptosis in human promyelocytic leukemic cells by (±)-anti-benzo[a]pyrene diol epoxide induced DNA damage. Biochem Biophys Res Commun 197(2):722–729

    Article  PubMed  CAS  Google Scholar 

  48. Walker PR, LeBlanc J, Sikorska M (1997) Evidence that DNA fragmentation in apoptosis is initiated and propagated by single-strand breaks. Cell Death Differ 4(6):506–515

    Article  PubMed  CAS  Google Scholar 

  49. Steinert SA (1996) Contribution of apoptosis to observed DNA damage in mussel cells. Mar Environ Res 42(1–4):253–259

    Article  CAS  Google Scholar 

  50. Kiss T, Osipenko ON (1994) Toxic effects of heavy metals on ionic channels. Pharmacol Rev 46(3):245–267

    PubMed  CAS  Google Scholar 

  51. Chabicovsky M, Klepal W, Dallinger R (2004) Mechanisms of cadmium toxicity in terrestrial pulmonates: programmed cell death and metallothionein overload. Environ Toxicol Chem 23(3):648–655

    Article  PubMed  CAS  Google Scholar 

  52. Domouhtsidou GP, Dimitriadis VK (2000) Ultrastructural localization of heavy metals (Hg, Ag, Pb, and Cu) in gills and digestive gland of mussels, Mytilus galloprovincialis (L.). Arch Environ Contam Toxicol 38(4):472–478

    Article  PubMed  CAS  Google Scholar 

  53. Marigomez I, Soto M, Kortabitarte M (1996) Tissue-level biomarkers and biological effect of mercury on sentinel slugs, Arion ater. Arch Environ Contam Toxicol 31(1):54–62

    Article  PubMed  CAS  Google Scholar 

  54. Cunha L, Amaral A, Medeiros V et al (2008) Bioavailable metals and cellular effects in the digestive gland of marine limpets living close to shallow water hydrothermal vents. Chemosphere 71(7):1356–1362

    Article  PubMed  CAS  Google Scholar 

  55. Micic M, Bihari N, Labura Z et al (2001) Induction of apoptosis in the blue mussel Mytilus galloprovincialis by tri-n-butyltin chloride. Aquat Toxicol 55(1–2):61–73

    Article  PubMed  CAS  Google Scholar 

  56. Pena-Llopis S, Ferrando MD, Pena JB (2002) Impaired glutathione redox status is associated with decreased survival in two organophosphate-poisoned marine bivalves. Chemosphere 47(5):485–497

    Article  PubMed  CAS  Google Scholar 

  57. Domenicotti C, Paola D, Vitali A et al (2000) Glutathione depletion induces apoptosis of rat hepatocytes through activation of protein kinase C novel isoforms and dependent increase in AP-1 nuclear binding. Free Radic Biol Med 29(12):1280–1290

    Article  PubMed  CAS  Google Scholar 

  58. Walker C, Bottger S, Low B (2006) Mortalin-based cytoplasmic sequestration of p53 in a nonmammalian cancer model. Am J Pathol 168(5):1526–1530

    Article  PubMed  CAS  Google Scholar 

  59. Clifford B, Beljin M, Stark GR et al (2003) G2 arrest in response to topoisomerase II inhibitors: the role of p53. Cancer Res 63(14):4074–4081

    PubMed  CAS  Google Scholar 

  60. Bottger S, Jerszyk E, Low B et al (2008) Genotoxic stress-induced expression of p53 and apoptosis in leukemic clam hemocytes with cytoplasmically sequestered p53. Cancer Res 68(3):777–782

    Article  PubMed  CAS  Google Scholar 

  61. Kefaloyianni E, Gourgou E, Ferle V et al (2005) Acute thermal stress and various heavy metals induce tissue-specific pro- or anti-apoptotic events via the p38-MAPK signal transduction pathway in Mytilus galloprovincialis (Lam.). J Exp Biol 208(Pt 23):4427–4436

    Article  PubMed  CAS  Google Scholar 

  62. Vasseur P, Cossu-Leguille C (2006) Linking molecular interactions to consequent effects of persistent organic pollutants (POPs) upon populations. Chemosphere 62(7):1033–1042

    Article  PubMed  CAS  Google Scholar 

  63. Le Pennec G, Le Pennec M (2002) Molecular analysis of the seasonal expression of genes coding for different functional markers of the digestive gland of the bivalve mollusk Pecten maximus (L.). Comp Biochem Physiol B 133(3):417–426

    Article  PubMed  Google Scholar 

  64. Mondy WL, Pierce SK (2003) Apoptotic-like morphology is associated with annual synchronized death in kleptoplastic sea slugs (Elysia chlorotica). Inv Biol 122(2):126–137

    Article  Google Scholar 

  65. Pierce SK, Maugel TK, Rumpho ME et al (1999) Annual viral expression in a sea slug population: life cycle control and symbiotic chloroplast maintenance. Biol Bull 197:1–6

    Article  Google Scholar 

  66. Rohwer F, Thurber RV (2009) Viruses manipulate the marine environment. Nature 459(7244):207–212

    Article  PubMed  CAS  Google Scholar 

  67. Oehlmann J, Stroben E, Fioroni P (1991) The morphological expression of imposex in Nucella-Lapillus (Linnaeus) (Gastropoda, Muricidae). J Molluscan Stud 57:375–390

    Article  Google Scholar 

  68. Nishikawa J (2006) Imposex in marine gastropods may be caused by binding of organotins to retinoid X receptor. Mar Biol 149(1):117–124

    Article  CAS  Google Scholar 

  69. Perry K, Lynn J (2009) Detecting physiological and pesticide-induced apoptosis in early developmental stages of invasive bivalves. Hydrobiologia 628(1):153–164

    Article  CAS  Google Scholar 

  70. Evan G (1994) Why we live and why we die. Chem Biol 1(3):137–141

    Article  PubMed  CAS  Google Scholar 

  71. Oberst A, Bender C, Green DR (2008) Living with death: the evolution of the mitochondrial pathway of apoptosis in animals. Cell Death Differ 15(7):1139–1146

    Article  PubMed  CAS  Google Scholar 

  72. Circu ML, Aw TY (2008) Glutathione and apoptosis. Free Radic Res 42(8):689–706

    Article  PubMed  CAS  Google Scholar 

  73. Bayascas JR, Yuste VJ, Benito E et al (2002) Isolation of AmphiCASP-3/7, an ancestral caspase from amphioxus (Branchiostoma floridae). Evolutionary considerations for vertebrate caspases. Cell Death Differ 9(10):1078–1089

    Article  PubMed  CAS  Google Scholar 

  74. Takada N, Yamaguchi H, Shida K et al (2005) The cell death machinery controlled by Bax and Bcl-XL is evolutionarily conserved in Ciona intestinalis. Apoptosis 10(6):1211–1220

    Article  PubMed  CAS  Google Scholar 

  75. Robertson AJ, Croce J, Carbonneau S et al (2006) The genomic underpinnings of apoptosis in Strongylocentrotus purpuratus. Dev Biol 300(1):321–334

    Article  PubMed  CAS  Google Scholar 

  76. Robb SM, Ross E, Sanchez Alvarado A (2008) SmedGD: the Schmidtea mediterranea genome database. Nucleic Acids Res 36((Database issue)):D599–D606

    PubMed  CAS  Google Scholar 

  77. Sullivan JC, Ryan JF, Watson JA et al (2006) StellaBase: the Nematostella vectensis genomics database. Nucleic Acids Res 34((Database issue)):D495–D499

    Article  PubMed  CAS  Google Scholar 

  78. Wiens M, Krasko A, Perovic S et al (2003) Caspase-mediated apoptosis in sponges: cloning and function of the phylogenetic oldest apoptotic proteases from Metazoa. Biochim Biophys Acta 1593(2–3):179–189

    PubMed  CAS  Google Scholar 

  79. Croll RP (2000) Insights into early molluscan neuronal development through studies of transmitter phenotypes in embryonic pond snails. Microsc Res Tech 49(6):570–578

    Article  PubMed  CAS  Google Scholar 

  80. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257

    PubMed  CAS  Google Scholar 

  81. Marois R, Carew TJ (1997) Ontogeny of serotonergic neurons in Aplysia californica. J Comp Neurol 386(3):477–490

    Article  PubMed  CAS  Google Scholar 

  82. Barlow LA, Truman JW (1992) Patterns of serotonin and SCP immunoreactivity during metamorphosis of the nervous system of the red abalone, Haliotis rufescens. J Neurobiol 23(7):829–844

    Article  PubMed  CAS  Google Scholar 

  83. Lin MF, Leise EM (1996) Gangliogenesis in the prosobranch gastropod Ilyanassa obsoleta. J Comp Neurol 374(2):180–193

    Article  PubMed  CAS  Google Scholar 

  84. Gifondorwa DJ, Leise EM (2006) Programmed cell death in the apical ganglion during larval metamorphosis of the marine mollusc Ilyanassa obsoleta. Biol Bull 210(2):109–120

    Article  PubMed  Google Scholar 

  85. Voronezhskaya EE, Elekes K (1996) Transient and sustained expression of FMRFamide-like immunoreactivity in the developing nervous system of Lymnaea stagnalis (Mollusca, Pulmonata). Cell Mol Neurobiol 16(6):661–676

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Author gratefully acknowledges valuable suggestions and comments of the Editors on the article. The author sincerely thanks anonymous referee for her/his valuable efforts in improving the language of the article. This work was supported by grant from Hungarian Research Scientific Fund (OTKA 43216).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Kiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiss, T. Apoptosis and its functional significance in molluscs. Apoptosis 15, 313–321 (2010). https://doi.org/10.1007/s10495-009-0446-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0446-3

Keywords

Navigation