Skip to main content
Log in

Sculpturing digit shape by cell death

  • Unusual Model Systems for Cell Death Research
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Physiological cell death is a key mechanism that ensures appropriate development and maintenance of tissues and organs in multicellular organisms. Most structures in the vertebrate embryo exhibit defined areas of cell death at precise stages of development. In this regard the areas of interdigital cell death during limb development provide a paradigmatic model of massive cell death with an evident morphogenetic role in digit morphogenesis. Physiological cell death has been proposed to occur by apoptosis, cellular phenomena genetically controlled to orchestrate cell suicide following two main pathways, cytochrome C liberation from the mitochondria or activation of death receptors. Such pathways converge in the activation of cysteine proteases known as caspases, which execute the cell death program, leading to typical morphologic changes within the cell, termed apoptosis. According to these findings it would be expected that caspases loss of function experiments could cause inhibition of interdigital cell death promoting syndactyly phenotypes. A syndactyly phenotype is characterized by absence of digit freeing during development that, when caused by absence of interdigital cell death, is accompanied by the persistence of an interdigital membrane. However this situation has not been reported in any of the KO mice or chicken loss of function experiments ever performed. Moreover histological analysis of dying cells within the interdigit reveals the synchronic occurrence of different types of cell death. All these findings are indicative of caspase alternative and/or complementary mechanisms responsible for physiological interdigital cell death. Characterization of alternative cell death pathways is required to explain vertebrate morphogenesis. Today there is great interest in cell death via autophagy, which could substitute or act synergistically to the apoptotic pathway. Here we discuss what is known about physiological cell death in the developing interdigital tissue of vertebrate embryos, paying special attention to the avian species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zakeri Z, Lockshin RA (2008) Cell death: history and future. Adv Exp Med Biol 615:1–11

    PubMed  Google Scholar 

  2. Saunders JW Jr (1966) Death in embryonic systems. Science 154:604–612

    PubMed  Google Scholar 

  3. Zuzarte-Luis V, Hurle JM (2005) Programmed cell death in the embryonic vertebrate limb. Semin Cell Dev Biol 16:261–269

    PubMed  Google Scholar 

  4. Fernandez-Teran MA, Hinchliffe JR, Ros MA (2006) Birth and death of cells in limb development: a mapping study. Dev Dyn 235:2521–2537

    PubMed  Google Scholar 

  5. Zuzarte-Luis V, Montero JA, Torre-Perez N, Garcia-Porrero JA, Hurle JM (2007) Cathepsin D gene expression outlines the areas of physiological cell death during embryonic development. Dev Dyn 236:880–885

    PubMed  Google Scholar 

  6. Rodriguez-Guzman M, Montero JA, Santesteban E, Ganan Y, Macias D, Hurle JM (2007) Tendon-muscle crosstalk controls muscle bellies morphogenesis, which is mediated by cell death and retinoic acid signaling. Dev Biol 302:267–280

    PubMed  Google Scholar 

  7. Mori C, Nakamura N, Kimura S, Irie H, Takigawa T, Shiota K (1995) Programmed cell death in the interdigital tissue of the fetal mouse limb is apoptosis with DNA fragmentation. Anat Rec 242:103–110

    PubMed  Google Scholar 

  8. Hinchliffe JR, Ede DA (1973) Cell death and the development of limb form and skeletal pattern in normal and wingless (Ws) chick embryos. J Embryol Exp Morphol 30:753–772

    PubMed  Google Scholar 

  9. Chen Y, Zhao X (1998) Shaping limbs by apoptosis. J Exp Zool 282:691–702

    PubMed  Google Scholar 

  10. Bouldin CM, Harfe BD (2009) Aberrant FGF signaling, independent of ectopic hedgehog signaling, initiates preaxial polydactyly in dorking chickens. Dev Biol 334:133–141

    PubMed  Google Scholar 

  11. Hurle JM, Colvee E, Fernandez-Teran MA (1985) Vascular regression during the formation of the free digits in the avian limb bud: a comparative study in chick and duck embryos. J Embryol Exp Morphol 85:239–250

    PubMed  Google Scholar 

  12. Hurle JM, Fernandez-Teran MA (1983) Fine structure of the regressing interdigital membranes during the formation of the digits of the chick embryo leg bud. J Embryol Exp Morphol 78:195–209

    PubMed  Google Scholar 

  13. Hurle JM, Fernandez-Teran MA (1984) Fine structure of the interdigital membranes during the morphogenesis of the digits of the webbed foot of the duck embryo. J Embryol Exp Morphol 79:201–210

    PubMed  Google Scholar 

  14. Fallon JF, Cameron J (1977) Interdigital cell death during limb development of the turtle and lizard with an interpretation of evolutionary significance. J Embryol Exp Morphol 40:285–289

    PubMed  Google Scholar 

  15. Salas-Vidal E, Valencia C, Covarrubias L (2001) Differential tissue growth and patterns of cell death in mouse limb autopod morphogenesis. Dev Dyn 220:295–306

    PubMed  Google Scholar 

  16. Hernandez-Martinez R, Castro-Obregon S, Covarrubias L (2009) Progressive interdigital cell death: regulation by the antagonistic interaction between fibroblast growth factor 8 and retinoic acid. Development 136:3669–3678

    PubMed  Google Scholar 

  17. Weatherbee SD, Behringer RR, Rasweiler JJ, Niswander LA (2006) Interdigital webbing retention in bat wings illustrates genetic changes underlying amniote limb diversification. Proc Natl Acad Sci USA 103:15103–15107

    PubMed  Google Scholar 

  18. Ganan Y, Macias D, Basco RD, Merino R, Hurle JM (1998) Morphological diversity of the avian foot is related with the pattern of Msx gene expression in the developing autopod. Dev Biol 196:33–41

    PubMed  Google Scholar 

  19. Cameron JA, Fallon JF (1977) The absence of cell death during development of free digits in amphibians. Dev Biol 55:331–338

    PubMed  Google Scholar 

  20. Vlaskalin T, Wong CJ, Tsilfidis C (2004) Growth and apoptosis during larval forelimb development and adult forelimb regeneration in the newt (Notophthalmus Viridescens). Dev Genes Evol 214:423–431

    PubMed  Google Scholar 

  21. Franssen RA, Marks S, Wake D, Shubin N (2005) Limb Chondrogenesis of the Seepage Salamander, Desmognathus Aeneus (Amphibia: Plethodontidae). J Morphol 265:87–101

    PubMed  Google Scholar 

  22. Garcia-Martinez V, Macias D, Ganan Y, Garcia-Lobo JM, Francia MV, Fernandez-Teran MA, Hurle JM (1993) Internucleosomal DNA fragmentation and programmed cell death (Apoptosis) in the interdigital tissue of the embryonic chick leg bud. J Cell Sci 106(Pt 1):201–208

    PubMed  Google Scholar 

  23. Wood W, Turmaine M, Weber R, Camp V, Maki RA, McKercher SR, Martin P (2000) Mesenchymal cells engulf and clear apoptotic footplate cells in macrophageless PU.1 null mouse embryos. Development 127:5245–5252

    PubMed  Google Scholar 

  24. García-Martínez V, Climent V (1985) Apoptosis and necrosis in the areas of interdigital cell death of the developing chick embryo limb bud. An Desarr 29:119–129

    Google Scholar 

  25. Zuzarte-Luis V, Berciano MT, Lafarga M, Hurle JM (2006) Caspase redundancy and release of mitochondrial apoptotic factors characterize interdigital apoptosis. Apoptosis 11:701–715

    PubMed  Google Scholar 

  26. Makarenkova H, Sugiura H, Yamagata K, Owens G (2005) Alternatively spliced variants of protocadherin 8 exhibit distinct patterns of expression during mouse development. Biochim Biophys Acta 1681:150–156

    PubMed  Google Scholar 

  27. Hurle JM, Corson G, Daniels K, Reiter RS, Sakai LY, Solursh M (1994) Elastin exhibits a distinctive temporal and spatial pattern of distribution in the developing chick limb in association with the establishment of the cartilaginous skeleton. J Cell Sci 107(Pt 9):2623–2634

    PubMed  Google Scholar 

  28. Dupe V, Ghyselinck NB, Thomazy V, Nagy L, Davies PJ, Chambon P, Mark M (1999) Essential roles of retinoic acid signaling in interdigital apoptosis and control of BMP-7 expression in mouse autopods. Dev Biol 208:30–43

    PubMed  Google Scholar 

  29. McCulloch DR, Le Goff C, Bhatt S, Dixon LJ, Sandy JD, Apte SS (2009) Adamts5, the gene encoding a proteoglycan-degrading metalloprotease, is expressed by specific cell lineages during mouse embryonic development and in adult tissues. Gene Expr Patterns 9:314–323

    PubMed  Google Scholar 

  30. McCulloch DR, Nelson CM, Dixon LJ, Silver DL, Wylie JD, Lindner V, Sasaki T, Cooley MA, Argraves WS, Apte SS (2009) ADAMTS metalloproteases generate active versican fragments that regulate interdigital web regression. Dev Cell 17:687–698

    PubMed  Google Scholar 

  31. Miner JH, Cunningham J, Sanes JR (1998) Roles for laminin in embryogenesis: exencephaly, syndactyly, and placentopathy in mice lacking the laminin alpha5 chain. J Cell Biol 143:1713–1723

    PubMed  Google Scholar 

  32. Arteaga-Solis E, Gayraud B, Lee SY, Shum L, Sakai L, Ramirez F (2001) Regulation of limb patterning by extracellular microfibrils. J Cell Biol 154:275–281

    PubMed  Google Scholar 

  33. Debeer P, Schoenmakers EF, Twal WO, Argraves WS, De Smet L, Fryns JP, Van De Ven WJ (2002) The fibulin-1 gene (FBLN1) is disrupted in a t(12;22) associated with a complex type of synpolydactyly. J Med Genet 39:98–104

    PubMed  Google Scholar 

  34. Smyth I, Du X, Taylor MS, Justice MJ, Beutler B, Jackson IJ (2004) The extracellular matrix gene frem1 is essential for the normal adhesion of the embryonic epidermis. Proc Natl Acad Sci USA 101:13560–13565

    PubMed  Google Scholar 

  35. Bose K, Nischt R, Page A, Bader BL, Paulsson M, Smyth N (2006) Loss of nidogen-1 and -2 results in syndactyly and changes in limb development. J Biol Chem 281:39620–39629

    PubMed  Google Scholar 

  36. Ramirez F, Sakai LY (2010) Biogenesis and Function of Fibrillin Assemblies. Cell Tissue Res 339:71–82

    PubMed  Google Scholar 

  37. Lindsten T, Ross AJ, King A, Zong WX, Rathmell JC, Shiels HA, Ulrich E, Waymire KG, Mahar P, Frauwirth K et al (2000) The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 6:1389–1399

    PubMed  Google Scholar 

  38. Hutcheson J, Scatizzi JC, Bickel E, Brown NJ, Bouillet P, Strasser A, Perlman H (2005) Combined loss of proapoptotic genes bak or bax with bim synergizes to cause defects in hematopoiesis and in thymocyte apoptosis. J Exp Med 201:1949–1960

    PubMed  Google Scholar 

  39. Crocoll A, Herzer U, Ghyselinck NB, Chambon P, Cato AC (2002) Interdigital apoptosis and downregulation of BAG-1 expression in mouse autopods. Mech Dev 111:149–152

    PubMed  Google Scholar 

  40. Nakanishi K, Maruyama M, Shibata T, Morishima N (2001) Identification of a caspase-9 substrate and detection of its cleavage in programmed cell death during mouse development. J Biol Chem 276:41237–41244

    PubMed  Google Scholar 

  41. Chautan M, Chazal G, Cecconi F, Gruss P, Golstein P (1999) Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr Biol 9:967–970

    PubMed  Google Scholar 

  42. Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H, Su MS, Rakic P, Flavell RA (1998) Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94:325–337

    PubMed  Google Scholar 

  43. Pop C, Salvesen GS (2009) Human caspases: activation, specificity, and regulation. J Biol Chem 284:21777–21781

    PubMed  Google Scholar 

  44. Milligan CE, Prevette D, Yaginuma H, Homma S, Cardwell C, Fritz LC, Tomaselli KJ, Oppenheim RW, Schwartz LM (1995) Peptide inhibitors of the ICE protease family arrest programmed cell death of motoneurons in vivo and in vitro. Neuron 15:385–393

    PubMed  Google Scholar 

  45. Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H, Rakic P, Flavell RA (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384:368–372

    PubMed  Google Scholar 

  46. Zheng TS, Hunot S, Kuida K, Flavell RA (1999) Caspase knockouts: matters of life and death. Cell Death Differ 6:1043–1053

    PubMed  Google Scholar 

  47. Guo Y, Srinivasula SM, Druilhe A, Fernandes-Alnemri T, Alnemri ES (2002) Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J Biol Chem 277:13430–13437

    PubMed  Google Scholar 

  48. Grossmann J, Walther K, Artinger M, Kiessling S, Scholmerich J (2001) Apoptotic signaling during initiation of detachment-induced apoptosis (“Anoikis”) of primary human intestinal epithelial cells. Cell Growth Differ 12:147–155

    PubMed  Google Scholar 

  49. Bergeron L, Perez GI, Macdonald G, Shi L, Sun Y, Jurisicova A, Varmuza S, Latham KE, Flaws JA, Salter JC et al (1998) Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev 12:1304–1314

    PubMed  Google Scholar 

  50. Zuzarte-Luis V, Montero JA, Kawakami Y, Izpisua-Belmonte JC, Hurle JM (2007) Lysosomal cathepsins in embryonic programmed cell death. Dev Biol 301:205–217

    PubMed  Google Scholar 

  51. Covarrubias L, Hernandez-Garcia D, Schnabel D, Salas-Vidal E, Castro-Obregon S (2008) Function of reactive oxygen species during animal development: passive or active? Dev Biol 320:1–11

    PubMed  Google Scholar 

  52. Salas-Vidal E, Lomeli H, Castro-Obregon S, Cuervo R, Escalante-Alcalde D, Covarrubias L (1998) Reactive oxygen species participate in the control of mouse embryonic cell death. Exp Cell Res 238:136–147

    PubMed  Google Scholar 

  53. Shan SW, Tang MK, Cai DQ, Chui YL, Chow PH, Grotewold L, Lee KK (2005) Comparative proteomic analysis identifies protein disulfide isomerase and peroxiredoxin 1 as new players involved in embryonic interdigital cell death. Dev Dyn 233:266–281

    PubMed  Google Scholar 

  54. Schnabel D, Salas-Vidal E, Narvaez V, Sanchez-Carbente Mdel R, Hernandez-Garcia D, Cuervo R, Covarrubias L (2006) Expression and regulation of antioxidant enzymes in the developing limb support a function of ros in interdigital cell death. Dev Biol 291:291–299

    PubMed  Google Scholar 

  55. Kirkland RA, Windelborn JA, Kasprzak JM, Franklin JL (2002) A bax-induced pro-oxidant state is critical for cytochrome c release during programmed neuronal death. J Neurosci 22:6480–6490

    PubMed  Google Scholar 

  56. Leist M, Jaattela M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–598

    PubMed  Google Scholar 

  57. Li W, Yuan X, Nordgren G, Dalen H, Dubowchik GM, Firestone RA, Brunk UT (2000) Induction of cell death by the lysosomotropic detergent MSDH. FEBS Lett 470:35–39

    PubMed  Google Scholar 

  58. Kirkegaard T, Jaattela M (2009) Lysosomal involvement in cell death and cancer. Biochim Biophys Acta 1793:746–754

    PubMed  Google Scholar 

  59. Feldstein AE, Werneburg NW, Li Z, Bronk SF, Gores GJ (2006) Bax inhibition protects against free fatty acid-induced lysosomal permeabilization. Am J Physiol Gastrointest Liver Physiol 290:G1339–G1346

    PubMed  Google Scholar 

  60. Castino R, Bellio N, Nicotra G, Follo C, Trincheri NF, Isidoro C (2007) Cathepsin D-bax death pathway in oxidative stressed neuroblastoma cells. Free Radic Biol Med 42:1305–1316

    PubMed  Google Scholar 

  61. Boya P, Kroemer G (2008) Lysosomal membrane permeabilization in cell death. Oncogene 27:6434–6451

    PubMed  Google Scholar 

  62. Boya P, Andreau K, Poncet D, Zamzami N, Perfettini JL, Metivier D, Ojcius DM, Jaattela M, Kroemer G (2003) Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J Exp Med 197:1323–1334

    PubMed  Google Scholar 

  63. Ishizaki Y, Jacobson MD, Raff MC (1998) A role for caspases in lens fiber differentiation. J Cell Biol 140:153–158

    PubMed  Google Scholar 

  64. Saftig P, Hetman M, Schmahl W, Weber K, Heine L, Mossmann H, Koster A, Hess B, Evers M, von Figura K (1995) Mice deficient for the lysosomal proteinase cathepsin D exhibit progressive atrophy of the intestinal mucosa and profound destruction of lymphoid cells. EMBO J 14:3599–3608

    PubMed  Google Scholar 

  65. Deussing J, Roth W, Saftig P, Peters C, Ploegh HL, Villadangos JA (1998) Cathepsins B and D are dispensable for major histocompatibility complex class II-mediated antigen presentation. Proc Natl Acad Sci USA 95:4516–4521

    PubMed  Google Scholar 

  66. Roth W, Deussing J, Botchkarev VA, Pauly-Evers M, Saftig P, Hafner A, Schmidt P, Schmahl W, Scherer J, Anton-Lamprecht I et al (2000) Cathepsin L deficiency as molecular defect of furless: hyperproliferation of keratinocytes and pertubation of hair follicle cycling. FASEB J 14:2075–2086

    PubMed  Google Scholar 

  67. Macias D, Ganan Y, Ros MA, Hurle JM (1996) In vivo inhibition of programmed cell death by local administration of FGF-2 and FGF-4 in the interdigital areas of the embryonic chick leg bud. Anat Embryol (Berl) 193:533–541

    Google Scholar 

  68. Wilkie AO, Patey SJ, Kan SH, van den Ouweland AM, Hamel BC (2002) FGFs, their receptors, and human limb malformations: clinical and molecular correlations. Am J Med Genet 112:266–278

    PubMed  Google Scholar 

  69. Sun X, Mariani FV, Martin GR (2002) Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature 418:501–508

    PubMed  Google Scholar 

  70. Pajni-Underwood S, Wilson CP, Elder C, Mishina Y, Lewandoski M (2007) BMP signals control limb bud interdigital programmed cell death by regulating FGF signaling. Development 134:2359–2368

    PubMed  Google Scholar 

  71. Mariani FV, Ahn CP, Martin GR (2008) Genetic evidence that FGFs have an instructive role in limb proximal-distal patterning. Nature 453:401–405

    PubMed  Google Scholar 

  72. Montero JA, Ganan Y, Macias D, Rodriguez-Leon J, Sanz-Ezquerro JJ, Merino R, Chimal-Monroy J, Nieto MA, Hurle JM (2001) Role of FGFs in the control of programmed cell death during limb development. Development 128:2075–2084

    PubMed  Google Scholar 

  73. Ota S, Zhou ZQ, Keene DR, Knoepfler P, Hurlin PJ (2007) Activities of N-Myc in the developing limb link control of skeletal size with digit separation. Development 134:1583–1592

    PubMed  Google Scholar 

  74. Maatouk DM, Choi KS, Bouldin CM, Harfe BD (2009) In the limb AER Bmp2 and Bmp4 are required for dorsal-ventral patterning and interdigital cell death but not limb outgrowth. Dev Biol 327:516–523

    PubMed  Google Scholar 

  75. Pizette S, Abate-Shen C, Niswander L (2001) BMP controls proximodistal outgrowth, via induction of the apical ectodermal ridge, and dorsoventral patterning in the vertebrate limb. Development 128:4463–4474

    PubMed  Google Scholar 

  76. Bastida MF, Sheth R, Ros MA (2009) A BMP-Shh negative-feedback loop restricts Shh expression during limb development. Development 136:3779–3789

    PubMed  Google Scholar 

  77. Macias D, Ganan Y, Sampath TK, Piedra ME, Ros MA, Hurle JM (1997) Role of BMP-2 and OP-1 (BMP-7) in programmed cell death and skeletogenesis during chick limb development. Development 124:1109–1117

    PubMed  Google Scholar 

  78. Zou H, Wieser R, Massague J, Niswander L (1997) Distinct roles of type I bone morphogenetic protein receptors in the formation and differentiation of cartilage. Genes Dev 11:2191–2203

    PubMed  Google Scholar 

  79. Merino R, Macias D, Ganan Y, Economides AN, Wang X, Wu Q, Stahl N, Sampath KT, Varona P, Hurle JM (1999) Expression and function of Gdf-5 during digit skeletogenesis in the embryonic chick leg bud. Dev Biol 206:33–45

    PubMed  Google Scholar 

  80. Montero JA, Hurle JM (2007) Deconstructing digit chondrogenesis. Bioessays 29:725–737

    PubMed  Google Scholar 

  81. Montero JA, Lorda-Diez CI, Ganan Y, Macias D, Hurle JM (2008) Activin/TGFbeta and BMP crosstalk determines digit chondrogenesis. Dev Biol 321:343–356

    PubMed  Google Scholar 

  82. Francis-West PH, Robertson KE, Ede DA, Rodriguez C, Izpisua-Belmonte JC, Houston B, Burt DW, Gribbin C, Brickell PM, Tickle C (1995) Expression of genes encoding bone morphogenetic proteins and sonic hedgehog in talpid (ta3) limb buds: their relationships in the signalling cascade involved in limb patterning. Dev Dyn 203:187–197

    PubMed  Google Scholar 

  83. Wang CK, Omi M, Ferrari D, Cheng HC, Lizarraga G, Chin HJ, Upholt WB, Dealy CN, Kosher RA (2004) Function of BMPs in the apical ectoderm of the developing mouse limb. Dev Biol 269:109–122

    PubMed  Google Scholar 

  84. Geetha-Loganathan P, Nimmagadda S, Huang R, Scaal M, Christ B (2006) Expression pattern of BMPs during chick limb development. Anat Embryol (Berl) 211(Suppl 1):87–93

    Google Scholar 

  85. Zuzarte-Luis V, Montero JA, Rodriguez-Leon J, Merino R, Rodriguez-Rey JC, Hurle JM (2004) A new role for BMP5 during limb development acting through the synergic activation of Smad and MAPK pathways. Dev Biol 272:39–52

    PubMed  Google Scholar 

  86. Merino R, Rodriguez-Leon J, Macias D, Ganan Y, Economides AN, Hurle JM (1999) The BMP antagonist gremlin regulates outgrowth, chondrogenesis and programmed cell death in the developing limb. Development 126:5515–5522

    PubMed  Google Scholar 

  87. Yokouchi Y, Sakiyama J, Kameda T, Iba H, Suzuki A, Ueno N, Kuroiwa A (1996) BMP-2/-4 mediate programmed cell death in chicken limb buds. Development 122:3725–3734

    PubMed  Google Scholar 

  88. Zou H, Niswander L (1996) Requirement for BMP signaling in interdigital apoptosis and scale formation. Science 272:738–741

    PubMed  Google Scholar 

  89. Guha U, Gomes WA, Kobayashi T, Pestell RG, Kessler JA (2002) In vivo evidence that BMP signaling is necessary for apoptosis in the mouse limb. Dev Biol 249:108–120

    PubMed  Google Scholar 

  90. Grotewold L, Plum M, Dildrop R, Peters T, Ruther U (2001) Bambi is coexpressed with Bmp-4 during mouse embryogenesis. Mech Dev 100:327–330

    PubMed  Google Scholar 

  91. Vargesson N, Laufer E (2009) Negative Smad expression and regulation in the developing chick limb. PLoS One 4:e5173

    PubMed  Google Scholar 

  92. Ross SA, McCaffery PJ, Drager UC, De Luca LM (2000) Retinoids in embryonal development. Physiol Rev 80:1021–1054

    PubMed  Google Scholar 

  93. Mercader N, Leonardo E, Piedra ME, Martinez-A C, Ros MA, Torres M (2000) Opposing RA and FGF signals control proximodistal vertebrate limb development through regulation of Meis genes. Development 127:3961–3970

    PubMed  Google Scholar 

  94. Zhao X, Sirbu IO, Mic FA, Molotkova N, Molotkov A, Kumar S, Duester G (2009) Retinoic acid promotes limb induction through effects on body axis extension but is unnecessary for limb patterning. Curr Biol 19:1050–1057

    PubMed  Google Scholar 

  95. Dolle P, Ruberte E, Kastner P, Petkovich M, Stoner CM, Gudas LJ, Chambon P (1989) Differential expression of genes encoding alpha, beta and gamma retinoic acid receptors and CRABP in the developing limbs of the mouse. Nature 342:702–705

    PubMed  Google Scholar 

  96. Kuss P, Villavicencio-Lorini P, Witte F, Klose J, Albrecht AN, Seemann P, Hecht J, Mundlos S (2009) Mutant Hoxd13 induces extra digits in a mouse model of synpolydactyly directly and by decreasing retinoic acid synthesis. J Clin Invest 119:146–156

    PubMed  Google Scholar 

  97. Rodriguez-Leon J, Merino R, Macias D, Ganan Y, Santesteban E, Hurle JM (1999) Retinoic acid regulates programmed cell death through BMP signalling. Nat Cell Biol 1:125–126

    PubMed  Google Scholar 

  98. Ahuja HS, James W, Zakeri Z (1997) Rescue of the limb deformity in hammertoe mutant mice by retinoic acid-induced cell death. Dev Dyn 208:466–481

    PubMed  Google Scholar 

  99. Yashiro K, Zhao X, Uehara M, Yamashita K, Nishijima M, Nishino J, Saijoh Y, Sakai Y, Hamada H (2004) Regulation of retinoic acid distribution is required for proximodistal patterning and outgrowth of the developing mouse limb. Dev Cell 6:411–422

    PubMed  Google Scholar 

  100. Francis JC, Radtke F, Logan MP (2005) Notch1 signals through Jagged2 to regulate apoptosis in the apical ectodermal ridge of the developing limb bud. Dev Dyn 234:1006–1015

    PubMed  Google Scholar 

  101. Sidow A, Bulotsky MS, Kerrebrock AW, Bronson RT, Daly MJ, Reeve MP, Hawkins TL, Birren BW, Jaenisch R, Lander ES (1997) Serrate2 is disrupted in the mouse limb-development mutant syndactylism. Nature 389:722–725

    PubMed  Google Scholar 

  102. Jiang R, Lan Y, Chapman HD, Shawber C, Norton CR, Serreze DV, Weinmaster G, Gridley T (1998) Defects in limb, craniofacial, and thymic development in Jagged2 mutant mice. Genes Dev 12:1046–1057

    PubMed  Google Scholar 

  103. Pan Y, Liu Z, Shen J, Kopan R (2005) Notch1 and 2 cooperate in limb ectoderm to receive an early Jagged2 signal regulating interdigital apoptosis. Dev Biol 286:472–482

    PubMed  Google Scholar 

  104. Chimal-Monroy J, Montero JA, Ganan Y, Macias D, Garcia-Porrero JA, Hurle JM (2002) Comparative analysis of the expression and regulation of Wnt5a, Fz4, and Frzb1 during digit formation and in micromass cultures. Dev Dyn 224:314–320

    PubMed  Google Scholar 

  105. Knobloch J, Ruther U (2008) Shedding light on an old mystery: thalidomide suppresses survival pathways to induce limb defects. Cell Cycle 7:1121–1127

    PubMed  Google Scholar 

  106. Grotewold L, Ruther U (2002) The Wnt antagonist Dickkopf-1 is regulated by Bmp signaling and c-Jun and modulates programmed cell death. EMBO J 21:966–975

    PubMed  Google Scholar 

  107. Mukhopadhyay M, Shtrom S, Rodriguez-Esteban C, Chen L, Tsukui T, Gomer L, Dorward DW, Glinka A, Grinberg A, Huang SP et al (2001) Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev Cell 1:423–434

    PubMed  Google Scholar 

  108. Grotewold L, Ruther U (2002) Bmp, Fgf and Wnt signalling in programmed cell death and chondrogenesis during vertebrate limb development: the role of Dickkopf-1. Int J Dev Biol 46:943–947

    PubMed  Google Scholar 

  109. Johnson EB, Hammer RE, Herz J (2005) Abnormal development of the apical ectodermal ridge and polysyndactyly in Megf7-deficient mice. Hum Mol Genet 14:3523–3538

    PubMed  Google Scholar 

  110. Morello R, Bertin TK, Schlaubitz S, Shaw CA, Kakuru S, Munivez E, Hermanns P, Chen Y, Zabel B, Lee B (2008) Brachy-syndactyly caused by loss of Sfrp2 function. J Cell Physiol 217:127–137

    PubMed  Google Scholar 

  111. Garcia-Moreno B (2009) Adaptations of proteins to cellular and subcellular pH. J Biol 8:98

    PubMed  Google Scholar 

Download references

Acknowledgments

Thanks are due to Montse Fernandez-Calderón and Sonia Pérez-Mantecón for excellent technical support. JAM and JMH work is supported respectively by grants BFU2005-04393 and BFU2008-03930 from the Spanish Sciences and Innovation Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan M. Hurlé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montero, J.A., Hurlé, J.M. Sculpturing digit shape by cell death. Apoptosis 15, 365–375 (2010). https://doi.org/10.1007/s10495-009-0444-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0444-5

Keywords

Navigation