Skip to main content

Detection of Cells Programmed to Die in Mouse Embryos

  • Protocol
  • First Online:
Mouse Molecular Embryology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1092))

Abstract

Programmed Cell Death (PCD) is a broad term used to describe a series of events that culminate in the death of specific cells. In the embryo it occurs at predictable stages and tissues. During mouse development, PCD is a mechanism to preserve the homeostasis of the growing organism, and also is needed for the morphogenesis of a variety of structures. Apoptosis or PCD type I shows a sequence of morphological and biochemical changes such as plasma membrane blebbing, increase in mitochondrial membrane permeability, caspase activation, chromatin condensation, and phagocytosis. Many of these changes can be used to determine the occurrence of apoptosis in different type of samples. For example, apoptosis has been visualized in whole embryos and tissue sections using vital dyes, and by detection of degraded DNA or active caspases. In the present report, we compare these methods during the course of interdigital cell death in the mouse limbs. We discuss which method is the most suitable to detect a particular stage of apoptosis, which in some cases may be relevant for the interpretation of data. We detail combined protocols to observe mRNA expression or protein and cell death in the same tissue sample. Furthermore, we discuss some of the methodological problems to analyze autophagic cell death or PCD type II during embryo development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vaux DL (1993) Toward an understanding of the molecular mechanisms of physiological cell death. Proc Natl Acad Sci U S A 90:786–789

    Article  PubMed  CAS  Google Scholar 

  2. Clarke PG (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol 181:195–213

    PubMed  CAS  Google Scholar 

  3. Cuervo R, Covarrubias L (2004) Death is the major fate of medial edge epithelial cells and the cause of basal lamina degradation during palatogenesis. Development 131:15–24

    Article  PubMed  CAS  Google Scholar 

  4. Hernandez-Martinez R, Castro-Obregon S, Covarrubias L (2009) Progressive interdigital cell death: regulation by the antagonistic interaction between fibroblast growth factor 8 and retinoic acid. Development 136:3669–3678

    Article  PubMed  CAS  Google Scholar 

  5. Weil M, Jacobson MD, Raff MC (1997) Is programmed cell death required for neural tube closure? Curr Biol 7:281–284

    Article  PubMed  CAS  Google Scholar 

  6. Baehrecke EH (2002) How death shapes life during development. Nat Rev Mol Cell Biol 3:779–787

    Article  PubMed  CAS  Google Scholar 

  7. Conradt B (2009) Genetic control of programmed cell death during animal development. Annu Rev Genet 43:493–523

    Article  PubMed  CAS  Google Scholar 

  8. Meyer N, Kim SS, Penn LZ (2006) The Oscar-worthy role of Myc in apoptosis. Semin Cancer Biol 16:275–287

    Article  PubMed  CAS  Google Scholar 

  9. Matsuzawa A, Ichijo H (2001) Molecular mechanisms of the decision between life and death: regulation of apoptosis by apoptosis signal-regulating kinase 1. J Biochem 130:1–8

    Article  PubMed  CAS  Google Scholar 

  10. Finegan KG, Wang X, Lee EJ, Robinson AC, Tournier C (2009) Regulation of neuronal survival by the extracellular signal-regulated protein kinase 5. Cell Death Differ 16:674–683

    Article  PubMed  CAS  Google Scholar 

  11. Kumar S (2007) Caspase function in programmed cell death. Cell Death Differ 14:32–43

    Article  PubMed  CAS  Google Scholar 

  12. Kurokawa M, Kornbluth S (2009) Caspases and kinases in a death grip. Cell 138:838–854

    Article  PubMed  CAS  Google Scholar 

  13. Ranger AM, Malynn BA, Korsmeyer SJ (2001) Mouse models of cell death. Nat Genet 28:113–118

    Article  PubMed  CAS  Google Scholar 

  14. Riedl SJ, Salvesen GS (2007) The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 8:405–413

    Article  PubMed  CAS  Google Scholar 

  15. Chipuk JE, Green DR (2008) How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18:157–164

    Article  PubMed  CAS  Google Scholar 

  16. Ekert PG, Vaux DL (2005) The mitochondrial death squad: hardened killers or innocent bystanders? Curr Opin Cell Biol 17:626–630

    Article  PubMed  CAS  Google Scholar 

  17. Widlak P, Garrard WT (2009) Roles of the major apoptotic nuclease-DNA fragmentation factor-in biology and disease. Cell Mol Life Sci 66:263–274

    Article  PubMed  CAS  Google Scholar 

  18. Ravichandran KS, Lorenz U (2007) Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol 7:964–974

    Article  PubMed  CAS  Google Scholar 

  19. Bratton DL, Fadok VA, Richter DA, Kailey JM, Guthrie LA, Henson PM (1997) Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase. J Biol Chem 72:26159–26165

    Article  Google Scholar 

  20. Zucker RM, Hunter ES 3rd, Rogers JM (1999) Apoptosis and morphology in mouse embryos by confocal laser scanning microscopy. Methods 18:473–480

    Article  PubMed  CAS  Google Scholar 

  21. Zucker RM, Hunter S, Rogers JM (1998) Confocal laser scanning microscopy of apoptosis in organogenesis-stage mouse embryos. Cytometry 33:348–354

    Article  PubMed  CAS  Google Scholar 

  22. Salas-Vidal E, Lomelí H, Castro-Obregón S, Cuervo R, Escalante-Alcalde D, Covarrubias L (1998) Reactive oxygen species participate in the control of mouse embryonic cell death. Exp Cell Res 238:136–147

    Article  PubMed  CAS  Google Scholar 

  23. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR (2010) The BCL-2 family reunion. Mol Cell 37:299–310

    Article  PubMed  CAS  Google Scholar 

  24. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA et al (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37–43

    Article  PubMed  CAS  Google Scholar 

  25. Niles AL, Moravec RA, Riss TL (2008) Caspase activity assays. Methods Mol Biol 414:137–150

    PubMed  CAS  Google Scholar 

  26. Srinivasan A, Roth KA, Sayers RO, Shindler KS, Wong AM, Fritz LC, Tomaselli KJ (1998) In situ immunodetection of activated caspase-3 in apoptotic neurons in the developing nervous system. Cell Death Differ 5:1004–1016

    Article  PubMed  CAS  Google Scholar 

  27. Bardet PL, Kolahgar G, Mynett A, Miguel-Aliaga I, Briscoe J, Meier P, Vincent JP (2008) A fluorescent reporter of caspase activity for live imaging. Proc Natl Acad Sci U S A 105:13901–13905

    Article  PubMed  CAS  Google Scholar 

  28. Kroemer G, Martin SJ (2005) Caspase-independent cell death. Nat Med 11:725–730

    Article  PubMed  Google Scholar 

  29. Hughes FM Jr, Gorospe WC (1991) Biochemical identification of apoptosis (programmed cell death) in granulosa cells: evidence for a potential mechanism underlying follicular atresia. Endocrinology 129:2415–2422

    Article  PubMed  CAS  Google Scholar 

  30. Garcia-Martinez V, Macias D, Ganan Y, Garcia-Lobo JM, Francia MV, Fernandez-Teran MA, Hurle JM (1993) Internucleosomal DNA fragmentation and programmed cell death (apoptosis) in the interdigital tissue of the embryonic chick leg bud. J Cell Sci 106(Pt 1):201–208

    PubMed  CAS  Google Scholar 

  31. Zakeri ZF, Quaglino D, Latham T, Lockshin RA (1993) Delayed internucleosomal DNA fragmentation in programmed cell death. FASEB J 7:470–478

    PubMed  CAS  Google Scholar 

  32. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  PubMed  CAS  Google Scholar 

  33. Hewitson TD, Bisucci T, Darby IA (2006) Histochemical localization of apoptosis with in situ labeling of fragmented DNA. Methods Mol Biol 326:227–234

    PubMed  CAS  Google Scholar 

  34. Bass BP, Tanner EA, Mateos San Martin D, Blute T, Kinser RD, Dolph PJ, McCall K (2009) Cell-autonomous requirement for DNaseII in nonapoptotic cell death. Cell Death Differ 16:1362–1371

    Article  PubMed  CAS  Google Scholar 

  35. Sanchez-Carbente MR, Castro-Obregon S, Covarrubias L, Narvaez V (2005) Motoneuronal death during spinal cord development is mediated by oxidative stress. Cell Death Differ 12:279–291

    Article  PubMed  CAS  Google Scholar 

  36. van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP (1998) Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31:1–9

    Article  PubMed  Google Scholar 

  37. Darzynkiewicz Z (1990) Differential staining of DNA and RNA in intact cells and isolated cell nuclei with acridine orange. Methods Cell Biol 33:285–298

    Article  PubMed  CAS  Google Scholar 

  38. Gonzalez K, McVey S, Cunnick J, Udovichenko IP, Takemoto DJ (1995) Acridine orange differential staining of total DNA and RNA in normal and galactosemic lens epithelial cells in culture using flow cytometry. Curr Eye Res 14:269–273

    Article  PubMed  CAS  Google Scholar 

  39. Hotz MA, Gong J, Traganos F, Darzynkiewicz Z (1994) Flow cytometric detection of apoptosis: comparison of the assays of in situ DNA degradation and chromatin changes. Cytometry 15:237–244

    Article  PubMed  CAS  Google Scholar 

  40. Tsujimoto Y, Shimizu S (2005) Another way to die: autophagic programmed cell death. Cell Death Differ 12(Suppl 2):1528–1534

    Article  PubMed  CAS  Google Scholar 

  41. Melendez A, Neufeld TP (2008) The cell biology of autophagy in metazoans: a developing story. Development 135:2347–2360

    Article  PubMed  CAS  Google Scholar 

  42. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  PubMed  CAS  Google Scholar 

  43. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036

    Article  PubMed  CAS  Google Scholar 

  44. Djehiche B, Segalen J, Chambon Y (1994) Ultrastructure of mullerian and wolffian ducts of fetal rabbit in vivo and in organ culture. Tissue Cell 26:323–332

    Article  PubMed  CAS  Google Scholar 

  45. Price JM, Donahoe PK, Ito Y, Hendren WH 3rd (1977) Programmed cell death in the Mullerian duct induced by Mullerian inhibiting substance. Am J Anat 149:353–375

    Article  PubMed  CAS  Google Scholar 

  46. Roberts LM, Visser JA, Ingraham HA (2002) Involvement of a matrix metalloproteinase in MIS-induced cell death during urogenital development. Development 129:1487–1496

    PubMed  CAS  Google Scholar 

  47. Teng CS (2000) Differential expression of c-Jun proteins during mullerian duct growth and apoptosis: caspase-related tissue death blocked by diethylstilbestrol. Cell Tissue Res 302:377–385

    Article  PubMed  CAS  Google Scholar 

  48. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326

    Article  PubMed  CAS  Google Scholar 

  49. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111

    Article  PubMed  CAS  Google Scholar 

  50. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752

    Article  PubMed  CAS  Google Scholar 

  51. Zuzarte-Luis V, Hurle JM (2002) Programmed cell death in the developing limb. Int J Dev Biol 46:871–876

    PubMed  CAS  Google Scholar 

  52. Rodriguez-Leon J, Merino R, Macias D, Ganan Y, Santesteban E, Hurle JM (1999) Retinoic acid regulates programmed cell death through BMP signalling. Nat Cell Biol 1:125–126

    Article  PubMed  CAS  Google Scholar 

  53. Pajni-Underwood S, Wilson CP, Elder C, Mishina Y, Lewandoski M (2007) BMP signals control limb bud interdigital programmed cell death by regulating FGF signaling. Development 134:2359–2368

    Article  PubMed  CAS  Google Scholar 

  54. Corson LB, Yamanaka Y, Lai KM, Rossant J (2003) Spatial and temporal patterns of ERK signaling during mouse embryogenesis. Development 130:4527–4537

    Article  PubMed  CAS  Google Scholar 

  55. Wilkinson DG, Nieto MA (1993) Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Methods Enzymol 225:361–373

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Concepción Valencia, Elizabeth Mata, Sergio González, Marcela Ramírez, and Andrés Saralegui for their technical assistance. This work was supported by grants IN218607 and IN225910 from PAPIIT-DGAPA.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Hernández-Martínez, R., Cuervo, R., Covarrubias, L. (2014). Detection of Cells Programmed to Die in Mouse Embryos. In: Lewandoski, M. (eds) Mouse Molecular Embryology. Methods in Molecular Biology, vol 1092. Humana Press, Boston, MA. https://doi.org/10.1007/978-1-60327-292-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-292-6_18

  • Published:

  • Publisher Name: Humana Press, Boston, MA

  • Print ISBN: 978-1-60327-290-2

  • Online ISBN: 978-1-60327-292-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics