Skip to main content

Advertisement

Log in

Cardiotonic steroid-resistant α1-Na+,K+-ATPase rescues renal epithelial cells from the cytotoxic action of ouabain: evidence for a Na +i ,K +i -independent mechanism

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Mechanisms underlying the tissue-specific impact of cardiotonic steroids (CTS) on cell survival and death remain poorly understood. This study examines the role of Na+,K+-ATPase α subunits in death of Madin-Darby canine kidney (MDCK) cells evoked by 24-h exposure to ouabain. MDCK cells expressing a variant of the α1 isoform, CTS-sensitive α1S, were stably transfected with a cDNA encoding CTS-resistant α1R-Na+,K+-ATPase, whose expression was confirmed by RT–PCR. In mock-transfected and α1R-cells, maximal inhibition of 86Rb influx was observed at 10 and 1000 μM ouabain, respectively, thus confirming high abundance of α1R-Na+,K+-ATPase in these cells. Six-hour treatment of α1R-cells with 1000 μM ouabain led to the same elevation of the [Na+]i/[K+]i ratio that was detected in mock-transfected cells treated with 3 μM ouabain. However, in contrast to the massive death of mock-transfected cells exposed to 3 μM ouabain, α1R-cells survived after 24-h incubation with 1000 μM ouabain. Inversion of the [Na+]i/[K+]i ratio evoked by Na+,K+-ATPase inhibition in K+-free medium did not affect survival of α1R-cells but increased their sensitivity to ouabain. Our results show that the α1R subunit rescues MDCK cells from the cytotoxic action of CTS independently of inhibition of Na+,K+-ATPase-mediated Na+ and K+ fluxes and inversion of the [Na+]i/[K+]i ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Skou JC (1960) Further investigation on a Mg2+ + Na+-activated adenosinetriphosphatase possibly related to the active transport of Na+ and K+ across the nerve cell membrane. Biochim Biophys Acta 42:6–23

    Article  CAS  Google Scholar 

  2. Schoner W, Scheiner-Bobis G (2007) Endogenous and exogenous cardiac glycosides: their role in hypertension, salt metabolism, and cell growth. Am J Physiol Cell Physiol 293:C509–C536

    Article  CAS  PubMed  Google Scholar 

  3. Kawamura A, Guo J, Itagaki Y, Bell C, Wang Y, Haupert J, Garner T, Magil S, Gallagher RT, Berova N, Nakanishi K (1999) On the structure of endogenous ouabain. Proc Natl Acad Sci USA 96:6654–6659

    Article  CAS  PubMed  Google Scholar 

  4. Bagrov AY, Fedorova OV, Dmitrieva RI, Howald WN, Hunter AP, Kuznetsova EA, Shpen VM (1998) Characterization of a urinary bufodielnolide Na, K-ATPase inhibitor in patients after acute myocardial infarction. Hypertension 31:1097–1103

    CAS  PubMed  Google Scholar 

  5. Komiyama Y, Dong XH, Hishimura N, Masaki H, Yoshika M, Masuda M, Takahashi H (2005) A novel endogenous digitalis, telocinobufagin, exhibits elevated plasma levels in patients with terminal renal failure. Clin Biochem 38:36–45

    Article  CAS  PubMed  Google Scholar 

  6. Lichtstein D, Gati I, Samuelov S, Berson D, Rozenman Y, Landau L, Deutsch J (1993) Identification of digitalis-like compounds in human cataractous lenses. Eur J Biochem 216:261–268

    Article  CAS  PubMed  Google Scholar 

  7. Blaustein MP, Zhang J, Chen L, Hamilton BP (2006) How does salt retention raise blood pressure? Am J Physiol Regul Integr Comp Physiol 290:R514–R523

    CAS  PubMed  Google Scholar 

  8. Bagrov AY, Shapiro JI, Fedorova OV (2009) Endogenous cardiotonic steroids: physiology, pharmacology, and novel therapeutic targets. Pharmacol Rev 61:9–38

    Article  CAS  PubMed  Google Scholar 

  9. Lingrel JB, Argüello JM, Van Huysse JW, Kuntzweiler TA (1997) Cation and cardiac glycoside binding sites of the Na, K-ATPase. Ann NY Acad Sci 843:194–206

    Article  Google Scholar 

  10. Dostanic I, Paul RJ, Lorenz JN, Theriault S, Van Huysse JW, Lingrel JB (2005) The α2-isoform of Na-K-ATPase mediates ouabain-induced hypertension in mice and increased vascular contractility in vitro. Am J Physol Heart Circ Physiol 288:H477–H485

    Article  CAS  Google Scholar 

  11. Dostanic-Larson I, Van Huysse JW, Lorenz JN, Lingrel JB (2005) The highly conserved cardiac glycoside binding site of Na, K-ATPase plays a role in blood pressure regulation. Proc Natl Acad Sci USA 102:15845–15850

    Article  CAS  PubMed  Google Scholar 

  12. Lorenz JN, Loreaux EL, Dostanic-Larson I, Lasko V, Schnetzer JR, Paul RJ, Lingrel JB (2008) ACTH-induced hypertension is dependent on the ouabain-binding site of the alpha2-Na+, K+-ATPase subunit. Am J Physiol Heart Circ Physiol 295:H273–H280

    Article  CAS  PubMed  Google Scholar 

  13. Hou X, Theriault SF, Dostanic-Larson I, Moseley AE, Lingrel JB, Wu H, Dean S, Van Huysse JW (2009) Enhanced pressor response to increased CSF sodium concentration and to central angiotensin I in heterozygous α2 Na, K-ATPase knockout mice. Am J Physiol Regul Integr Comp Physiol 295:R1427–R1438

    Google Scholar 

  14. Dostanic I, Lorenz JN, Schultz JEJ, Grupp IL, Neumann JC, Wani MA, Lingrel JB (2003) The α2 isoform of Na, K-ATPase mediates ouabain-induced cardiac inotropy in mice. J Biol Chem 278:53026–53034

    Article  CAS  PubMed  Google Scholar 

  15. Radzyukevich TL, Lingrel JB, Heiny JA (2009) The cardiac glycoside binding site of the Na, K-ATPase α2 isoform plays a role in the dynamic regulation of active transport in skeletal muscle. Proc Natl Acad Sci USA 106:2565–2570

    Article  CAS  PubMed  Google Scholar 

  16. Wansapura AN, Lasko V, Xie Z, Fedorova OV, Bagrov AY, Lingrel JB, Lorenz JN (2009) Marinobufagenin enhances cardiac contractility in mice with ouabain-sensitive α1 Na+-K+-ARPase. Am J Physiol Heart Circ Physiol 296:H1833–H1839

    Article  CAS  PubMed  Google Scholar 

  17. Loreaux EL, Kaul B, Lorenz JN, Lingrel JB (2008) Ouabain-sensitive α1 Na, K-ATPase enhances natriuretic response to saline load. J Am Soc Nephrol 19:1947–1954

    Article  CAS  PubMed  Google Scholar 

  18. Falciola J, Volet B, Anner RM, Moosmayer M, Lacotte D, Anner BM (1994) Role of cell membrane Na, K-ATPase for survival of human lymphocytes in vivo. Biosci Rep 14:189–204

    Article  CAS  PubMed  Google Scholar 

  19. Orlov SN, Taurin S, Tremblay J, Hamet P (2001) Inhibition of Na+, K+ pump affects nucleic acid synthesis and smooth muscle cell proliferation via elevation of the [Na+]i/[K+]i ratio: possible implication in vascular remodeling. J Hypertens 19:1559–1565

    Article  CAS  PubMed  Google Scholar 

  20. Orlov SN, Thorin-Trescases N, Kotelevtsev SV, Tremblay J, Hamet P (1999) Inversion of the intracellular Na+/K+ ratio blocks apoptosis in vascular smooth muscle at a site upstream of caspase-3. J Biol Chem 274:16545–16552

    Article  CAS  PubMed  Google Scholar 

  21. Akimova OA, Mongin AA, Hamet P, Orlov SN (2006) The rapid decline of MTT reduction is not a marker of death signaling in ouabain-treated cells. Cell Mol Biol 52(8):71–77

    CAS  PubMed  Google Scholar 

  22. Ledbetter ML, Young GJ, Wright ER (1986) Cooperation between epithelial cells demonstrated by potassium transfer. Am J Physiol 250:C306–C313

    CAS  PubMed  Google Scholar 

  23. Bolivar JJ, Lazaro A, Fernandez S, Stefani E, Pena-Cruz V, Lechene C, Cereijido M (1987) Rescue of a wild-type MDCK cell by a ouabain-resistant mutant. Am J Physiol 253:C151–C161

    CAS  PubMed  Google Scholar 

  24. Orlov SN, Thorin-Trescases N, Pchejetski D, Taurin S, Farhat N, Tremblay J, Thorin E, Hamet P (2004) Na+/K+ pump and endothelial cell survival: [Na+]i/[K+]i-independent necrosis triggered by ouabain, and protection against apoptosis mediated by elevation of [Na+]i. Pflugers Archiv 448:335–345

    Article  CAS  PubMed  Google Scholar 

  25. Pchejetski D, Taurin S, der Sarkissian S, Lopina OD, Pshezhetsky AV, Tremblay J, DeBlois D, Hamet P, Orlov SN (2003) Inhibition of Na+, K+-ATPase by ouabain triggers epithelial cell death independently of inversion of the [Na+]i/[K+]i ratio. Biochem Biophys Res Commun 301:735–744

    Article  CAS  PubMed  Google Scholar 

  26. Contreras RG, Flores-Maldonado C, Lazaro A, Shoshani L, Flores-Benitez D, Larre I, Cereijido M (2004) Ouabain binding to Na+, K+-ATPase relaxes cell attachment and sends a specific signal (NACos) to the nucleus. J Membr Biol 198:147–158

    Article  CAS  PubMed  Google Scholar 

  27. Akimova OA, Bagrov AY, Lopina OD, Kamernitsky AV, Tremblay J, Hamet P, Orlov SN (2005) Cardiotonic steroids differentially affect intracellular Na+ and [Na+]i/[K+]i-independent signaling in C7-MDCK cells. J Biol Chem 280:832–839

    CAS  PubMed  Google Scholar 

  28. Orlov SN, Hamet P (2006) The death of cardiotinic steroid-treated cells: evidence of Na+i, K+i-independent H+i-sensitive signaling. Acta Physiologica (Oxf) 187:231–240

    Article  CAS  Google Scholar 

  29. Rajasekaran SA, Gopal J, Willis D, Espineda C, Twiss JL, Rajasekaran AK (2004) Na, K-ATPase β1-subunit increases the translation efficiency of the α1-subunit in MCV-MDCK cells. Mol Biol Cell 15:3224–3232

    Article  CAS  PubMed  Google Scholar 

  30. Jewell EA, Lingrel JB (1991) Comparison of the substrate dependence properties of the rat Na, K, ATPase α1, α2, and α3 isoforms expressed in HeLa cells. J Biol Chem 266:16925–16930

    CAS  PubMed  Google Scholar 

  31. Contreras RG, Flores-Benitez D, Flores-Maldonado C, Larre I, Shoshani L, Cereijido M (2006) Na+, K+-ATPase and hormone ouabain: new roles for an old enzyme and an old inhibitor. Cell Mol Biol 30:31–40

    Google Scholar 

  32. Contreras RG, Shoshani L, Flores-Maldonado C, Lazaro A, Cereijido M (1999) Relationship between Na+, K+-ATPase and cell attachment. J Cell Sci 112:4223–4232

    CAS  PubMed  Google Scholar 

  33. Kroemer G, El-Diery WS, Golstein P, Peter ME, Vaux D, Vandenabeele P, Zhivotovsky B, Blagosklonny MV, Malorni W, Knight RA, Placentini M, Nagata S, Melino G (2005) Classification of cell death: recommendations of the Nomeclature Committee on Cell Death. Cell Death Differ 12:1463–1467

    Article  CAS  PubMed  Google Scholar 

  34. Xie Z, Askari A (2002) Na+/K+-ATPase as a signal transducer. Eur J Biochem 269:2434–2439

    Article  CAS  PubMed  Google Scholar 

  35. Hegyvary C, Jorgensen PL (1981) Conformational changes of renal sodium plus potassium ion transport adenosine triphosphatase labeled with fluorescein. J Biol Chem 256:6296–6303

    CAS  PubMed  Google Scholar 

  36. Haas M, Wang H, Tian J, Xie Z (2002) Src-mediated inter-receptor cross-talk between the Na+, K+-ATPase and epidermal growth factor receptor relays the signal from ouabain to mitogen-activated protein kinases. J Biol Chem 277:18694–18702

    Article  CAS  PubMed  Google Scholar 

  37. Wang H, Haas M, Liang M, Cai T, Tian J, Li S, Xie Z (2004) Ouabain assembles signaling cascade through the caveolar Na+, K+-ATPase. J Biol Chem 279:17250–17259

    Article  CAS  PubMed  Google Scholar 

  38. Liu J, Kesiry R, Periyasamy SM, Malhotra D, Xie Z, Shapiro JI (2004) Ouabain-induced endocytosis of plasmalemmal Na/K-ATPase in LLC-PK1 cells by clathrin-dependent mechanism. Kidney Int 66:227–241

    Article  CAS  PubMed  Google Scholar 

  39. Miakawa-Naito A, Uhlén P, Lal M, Aizman O, Mikoshiba K, Brismar H, Zelenin S, Aperia A (2003) Cell signaling microdomain with Na, K-ATPase and inositol 1, 4, 5-triphosphate receptor generates calcium oscillations. J Biol Chem 278:50355–50361

    Article  Google Scholar 

  40. Akimova OA, Lopina OD, Hamet P, Orlov SN (2005) Search for intermediates of Na+, K+-ATPase-mediated [Na+]i/[K+]i-independent death signaling triggered by cardiotonic steroids. Pathophysiology 12:125–135

    Article  CAS  PubMed  Google Scholar 

  41. Akimova OA, Hamet P, Orlov SN (2008) [Na+]i/[K+]i-independent death of ouabain-treated renal epithelial cells is not mediated by Na+, K+-ATPase internalization and de novo gene expression. Pflügers Archiv 455:711–719

    Article  CAS  PubMed  Google Scholar 

  42. Lefkowitz RJ (2007) Seven transmembrane receptors: something old, something new. Acta Physiol 190:9–19

    Article  CAS  Google Scholar 

  43. Akimova OA, Lopina OD, Rubtsov AM, Gekle M, Tremblay J, Hamet P, Orlov SN (2009) Death of ouabain-treated renal epithelial cells: evidence for p38 MAPK-mediated Na +i /K +i -independent signaling. Apoptosis 14:1266–1273

    Article  CAS  Google Scholar 

  44. Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275:F633–F650

    CAS  PubMed  Google Scholar 

  45. Pierre SV, Sottejeau Y, Gourbeau JM, Sanchez G, Shidyak A, Bianco VG (2008) Isoform-specificity of Na, K-ATPase-mediated ouabain signaling. Am J Physiol Renal Physiol 294:F859–F866

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Canadian Institutes of Health Research (MOP-81392 to SNO, JT and PH), Heart and Stroke Foundation of Quebec (to SNO, JT and PH) and Heart and Stroke Foundation of Ontario (NA-6324 to JWV) Canada. OA is a recipient of a fellowship from the Kidney Foundation of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga A. Akimova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akimova, O.A., Tremblay, J., Van Huysse, J.W. et al. Cardiotonic steroid-resistant α1-Na+,K+-ATPase rescues renal epithelial cells from the cytotoxic action of ouabain: evidence for a Na +i ,K +i -independent mechanism. Apoptosis 15, 55–62 (2010). https://doi.org/10.1007/s10495-009-0429-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0429-4

Keywords

Navigation