Skip to main content

Advertisement

SpringerLink
Go to cart
  • Log in
  1. Home
  2. Apoptosis
  3. Article
IP3 receptors in cell survival and apoptosis: Ca2+ release and beyond
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Bcl-2 and IP3 compete for the ligand-binding domain of IP3Rs modulating Ca2+ signaling output

16 April 2019

Hristina Ivanova, Larry E. Wagner II, … Geert Bultynck

Apoptotic Features in Non-Apoptotic Processes

11 March 2022

Margarita A. Savitskaya, Ilya I. Zakharov & Galina E. Onishchenko

XIAP as a multifaceted molecule in Cellular Signaling

04 June 2022

Mina Hanifeh & Farangis Ataei

GqPCR-stimulated dephosphorylation of AKT is induced by an IGBP1-mediated PP2A switch

08 January 2022

Guy Nadel, Zhong Yao, … Rony Seger

Orai1α, but not Orai1β, co-localizes with TRPC1 and is required for its plasma membrane location and activation in HeLa cells

06 January 2022

Jose Sanchez-Collado, Jose J. Lopez, … Juan A. Rosado

Mibefradil alters intracellular calcium concentration by activation of phospholipase C and IP3 receptor function

30 April 2021

Guilherme H. Souza Bomfim, Erna Mitaishvili, … Rodrigo S. Lacruz

Mechanisms of Procaspase-8 Activation in the Extrinsic Programmed Cell Death Pathway

01 September 2019

N. V. Ivanisenko & I. N. Lavrik

Rictor, an essential component of mTOR complex 2, undergoes caspase-mediated cleavage during apoptosis induced by multiple stimuli

27 April 2021

Liqun Zhao, Lei Zhu, … Shi-Yong Sun

Mathematical Modeling Reveals the Importance of the DED Filament Composition in the Effects of Small Molecules Targeting Caspase-8/c-FLIPL Heterodimer

27 October 2020

N. V. Ivanisenko & I. N. Lavrik

Download PDF
  • Published: 06 February 2007

IP3 receptors in cell survival and apoptosis: Ca2+ release and beyond

  • Suresh K. Joseph1 &
  • György Hajnóczky1 

Apoptosis volume 12, pages 951–968 (2007)Cite this article

  • 1837 Accesses

  • 130 Citations

  • 6 Altmetric

  • Metrics details

Abstract

Inositol 1,4,5-trisphosphate receptors (IP3Rs) serve to discharge Ca2+ from ER stores in response to agonist stimulation. The present review summarizes the role of these receptors in models of Ca2+-dependent apoptosis. In particular we focus on the regulation of IP3Rs by caspase-3 cleavage, cytochrome c, anti-apoptotic proteins and Akt kinase. We also address the evidence that some of the effects of IP3Rs in apoptosis may be independent of their ion-channel function. The role of IP3Rs in delivering Ca2+ to the mitochondria is discussed from the perspective of the factors determining inter-organellar dynamics and the spatial proximity of mitochondria and ER membranes.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

Abbreviations

NFAT:

Nuclear factor of activated T-cells

ER:

endoplasmic reticulum

MEF:

murine embryo fibroblasts

HIV:

Human immunodeficiency virus

STS:

staurosporine

Bcl-2:

B cell lymphoma 2

Bcl-xL:

B cell lymphoma xL

IP3R:

Inositol 1,4,5-trisphosphate receptors

RyR:

Ryanodine receptor

FasL:

Ligand for Fas receptor (CD95)

VDAC:

Voltage dependent anion selective channel

[Ca2+]c :

cytoplasmic free [Ca2+]

[Ca2+]m :

mitochondrial matrix free [Ca2+]

OMM:

outer mitochondrial membrane

IMM:

inner mitochondrial membrane

PTP:

permeability transition pore

References

  1. Mikoshiba K (2006) Inositol 1,4,5-trisphosphate IP(3) receptors and their role in neuronal cell function. J Neurochem 97:1627–1633

    PubMed  CAS  Google Scholar 

  2. Patel S, Joseph SK, Thomas AP (1999) Molecular properties of inositol 1,4,5-trisphosphate receptors. Cell Calcium 25:247–264

    PubMed  CAS  Google Scholar 

  3. Patterson RL, Boehning D, Snyder SH (2004) Inositol 1,4,5-trisphosphate receptors as signal integrators. Annual reviews in Biochemistry 73:437–465

    CAS  Google Scholar 

  4. McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70:391–425

    PubMed  CAS  Google Scholar 

  5. Robb-Gaspers LD, Rutter GA, Burnett P, Hajnoczky G, Denton RM, Thomas AP (1998) Coupling between cytosolic and mitochondrial calcium oscillations: role in the regulation of hepatic metabolism. Biochim Biophys Acta 1366:17–32

    PubMed  CAS  Google Scholar 

  6. Walter L, Hajnoczky G (2005) Mitochondria and endoplasmic reticulum: the lethal interorganelle cross-talk. J Bioenerg Biomembr 37:191–206

    PubMed  CAS  Google Scholar 

  7. Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86:369–408

    PubMed  CAS  Google Scholar 

  8. Hanson CJ, Bootman MD, Roderick HL (2004) Cell signalling: IP3 receptors channel calcium into cell death. Curr Biol 14:R933–R935

    PubMed  CAS  Google Scholar 

  9. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nature review Molecular Cell Biology 4:552–565

    CAS  Google Scholar 

  10. Demaurex N, Distelhorst C (2003) Cell biology. Apoptosis—the calcium connection. Science 300:65–67

    PubMed  CAS  Google Scholar 

  11. Randriamampita C, Trautmann A (2004) Ca2+ signals and T lymphocytes; “New mechanisms and functions in Ca2+ signalling”. Biol Cell 96:69–78

    PubMed  CAS  Google Scholar 

  12. Bhakta NR, Lewis RS (2005) Real-time measurement of signaling and motility during T cell development in the thymus. Semin Immunol 17:411–420

    PubMed  CAS  Google Scholar 

  13. Kurosaki T (2002) Regulation of B-cell signal transduction by adaptor proteins. Nat Rev Immunol 2:354–363

    PubMed  CAS  Google Scholar 

  14. Zhong F, Davis MC, McColl KS, Distelhorst CW (2006) Bcl-2 differentially regulates Ca2+ signals according to the strength of T cell receptor activation. J Cell Biol 172:127–137

    PubMed  CAS  Google Scholar 

  15. McFarlane SM, Anderson HM, Tucker SJ, Jupp OJ, MacEwan DJ (2000) Unmodified calcium concentrations in tumour necrosis factor receptor subtype-mediated apoptotic cell death. Mol Cell Biochem 211:19–26

    PubMed  CAS  Google Scholar 

  16. Binah O, Shilkrut M, Yaniv G, Larisch S (2004) The Fas receptor-1,4,5-IP3 cascade: a potential target for treating heart failure and arrhythmias. Ann NY Acad Sci 1015:338–350

    PubMed  CAS  Google Scholar 

  17. Wozniak AL, Wang X, Stieren ES, Scarbrough SG, Elferink CJ, Boehning D (2006) Fas apoptosis is mediated by phospholipase C-gamma1 activation and cytosolic Ca2+ elevation. J Cell Biol

  18. Pinton P, Ferrari D, Rapizzi E, Di Virgilio F, Pozzan T, Rizzuto R (2001) The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J 20:2690–2701

    PubMed  CAS  Google Scholar 

  19. Nutt LK, Chandra J, Pataer A et al (2002) Bax-mediated Ca2+ mobilization promotes cytochrome c release during apoptosis. J Biol Chem 277:20301–20308

    PubMed  CAS  Google Scholar 

  20. Assefa Z, Bultynck G, Szlufcik K et al (2004) Caspase-3-induced Truncation of Type 1 Inositol trisphosphate receptor accelerates apoptotic cell death and induces inositol trisphosphate-independent calcium release during apoptosis. J Biol Chem 279:43227–43236

    PubMed  CAS  Google Scholar 

  21. Nawrocki ST, Carew JS, Dunner K Jr et al (2005) Bortezomib inhibits PKR-like endoplasmic reticulum (ER) kinase and induces apoptosis via ER stress in human pancreatic cancer cells. Cancer Res 65:11510–11519

    PubMed  CAS  Google Scholar 

  22. Baffy G, Miyashita T, Williamson JR, Reed JC (1993) Apoptosis induced by withdrawal of Interleukin-3 from an IL-3 dependent hematopoetic cell line is associated with repartitioning of intracellular calcium and is blocked by enforced bcl-2 oncoprotein production. J Biol Chem 268:6511–6519

    PubMed  CAS  Google Scholar 

  23. Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore GC (2003) Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22:8608–8618

    PubMed  CAS  Google Scholar 

  24. Boyce M, Yuan J (2006) Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ 13:363–373

    PubMed  CAS  Google Scholar 

  25. Camello C, Lomax R, Petersen OH, Tepikin AV (2002) Calcium leak from intracellular stores—the enigma of calcium signalling. Cell Calcium 32:355–361

    PubMed  CAS  Google Scholar 

  26. Khan AA, Soloski MJ, Sharp AH et al (1996) Lymphocyte apoptosis: Mediation by increased type 3 inositol 1,4,5-trisphosphate receptor. Science 273:503–506

    PubMed  CAS  Google Scholar 

  27. Blackshaw S, Sawa A, Sharp AH, Ross CA, Snyder SH, Khan AA (2000) Type 3 inositol 1,4,5-trisphosphate receptor modulates cell death. FASEB J 14:1375–1379

    PubMed  CAS  Google Scholar 

  28. Mendes CC, Gomes DA, Thompson M et al (2005) The type III inositol 1,4,5-trisphosphate receptor preferentially transmits apoptotic Ca2+ signals into mitochondria. J Biol Chem 280:40892–40900

    PubMed  CAS  Google Scholar 

  29. Jayaraman T, Marks AR (1997) T cells deficient in Inositol 1,4,5-trisphosphate receptor are resistant to apoptosis. Mol Cell Biol 17:3005–3012

    PubMed  CAS  Google Scholar 

  30. Jayaraman T, Marks AR (2000) Calcineurin is downstream of the inositol 1,4,5-trisphosphate receptor in the apoptotic and cell growth pathways. J Biol Chem 275:6417–6420

    PubMed  CAS  Google Scholar 

  31. Hirota J, Baba M, Matsumoto M, Furuichi T, Takatsu K, Mikoshiba K (1998) T-cell-receptor signalling in inositol 1,4,5-trisphosphate receptor (IP3R) type-1-deficient mice: is IP3R type 1 essential for T-cell-receptor signalling? Biochem J 333:615–619

    PubMed  CAS  Google Scholar 

  32. Futatsugi A, Nakamura T, Yamada MK et al (2005) IP3 receptor types 2 and 3 mediate exocrine secretion underlying energy metabolism. Science 309:2232–2234

    PubMed  CAS  Google Scholar 

  33. Miyakawa T, Maeda A, Yamazawa T, Hirose K, Kurasaki T, Iino M (1999) Encoding of calcium signals by differential expression of IP3 receptor subtypes. EMBO J 18:1303–1308

    PubMed  CAS  Google Scholar 

  34. Sugawara H, Kurosaki M, Takata M, Kurosaki T (1997) Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. EMBO J 16:3078–3088

    PubMed  CAS  Google Scholar 

  35. White C, Li C, Yang J et al (2005) The endoplasmic reticulum gateway to apoptosis by Bcl-X(L) modulation of the InsP3R. Nat Cell Biol 7:1021–1028

    PubMed  CAS  Google Scholar 

  36. Hirota J, Furuichi T, Mikoshiba K (1999) Inositol 1,4,5-trisphosphate receptor type-I is a substrate for caspase-3 and is cleaved in apoptosis in a caspase-3 dependent manner. J Biol Chem 274:34433–34437

    PubMed  CAS  Google Scholar 

  37. Diaz F, Bourguignon LY (2000) Selective down-regulation of IP3 receptor subtypes by caspases and calpains during TNFalpha apoptosis of human T-lymphoma cells. Cell Calcium 27:315–328

    PubMed  CAS  Google Scholar 

  38. Haug LS, Walaas I, Ostvold AC (2000) Degradation of the type-I Inositol 1,4,5-trsiphosphate receptor by caspase-3 in SH-SY5Y Neuroblastoma cells undergoing apoptosis. J Neurochem 75:1852–1861

    PubMed  CAS  Google Scholar 

  39. Boehning D, Patterson RL, Sedaghat L, Glebova NO, Kurosaki T, Snyder SH (2003) Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol 5:1051–1061

    PubMed  CAS  Google Scholar 

  40. Bhanumathy CD, Nakao SK, Joseph SK (2006) Mechanism of proteasomal degradation of inositol trisphosphate receptors in CHO-K1 cells. J Biol Chem 281:3722–3730

    PubMed  CAS  Google Scholar 

  41. Sergeev IN (2004) Genistein induces Ca2+ -mediated, calpain/caspase-12-dependent apoptosis in breast cancer cells. Biochem Biophys Res Commun 321:462–467

    PubMed  CAS  Google Scholar 

  42. Palmer AE, Jin C, Reed JC, Tsien RY (2004) Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. Proc Natl Acad Sci USA 101:17404–17409

    PubMed  CAS  Google Scholar 

  43. Xu L, Kong D, Zhu L, Zhu W, Andrews DW, Kuo TH (2006) Suppression of IP3-mediated calcium release and apoptosis by Bcl-2 involves the participation of protein phosphatase 1. Mol Cell Biochem

  44. Nakayama T, Hattori M, Uchida K et al (2004) The regulatory domain of the inositol 1,4,5-trisphosphate receptor is necessary to keep the channel domain closed: possible physiological significance of specific cleavage by caspase 3. Biochem J 377:299–307

    PubMed  CAS  Google Scholar 

  45. Szlufcik K, Missiaen L, Parys JB, Callewaert G, De Smedt H (2006) Uncoupled IP3 receptor can function as a Ca2+-leak channel: cell biological and pathological consequences. Biol Cell 98:1–14

    PubMed  CAS  Google Scholar 

  46. Harwood SM, Yaqoob MM, Allen DA (2005) Caspase and calpain function in cell death: bridging the gap between apoptosis and necrosis. Ann Clin Biochem 42:415–431

    PubMed  CAS  Google Scholar 

  47. Magnusson A, Haug L, Walaas S, Ostvold A (1993) Calcium-induced degradation of the inositol (1,4,5)-trisphosphate receptor/Ca(2+)-channel. FEBS Lett 323:229–232

    PubMed  CAS  Google Scholar 

  48. Wojcikiewicz RJH, Oberdorf JA (1996) Degradation of inositol 1,4,5-trisphosphate receptors during cell stimulation is a specific process mediated by cysteine protease. J Biol Chem 271:16652–16655

    PubMed  CAS  Google Scholar 

  49. Chen M, He H, Zhan S, Krajewski S, Reed JC, Gottlieb RA (2001) Bid is cleaved by calpain to an active fragment in vitro and during myocardial ischemia/reperfusion. J Biol Chem 276:30724–30728

    PubMed  CAS  Google Scholar 

  50. Shulga N, Pastorino JG (2006) Acyl coenzyme a binding protein augments bid induced mitochondrial damage and cell death by activating mu-calpain. J Biol Chem

  51. Tan Y, Dourdin N, Wu C, De Veyra T, Elce JS, Greer PA (2006) Ubiquitous calpains promote caspase-12 and JNK activation during endoplasmic reticulum stress-induced apoptosis. J Biol Chem 281:16016–16024

    PubMed  CAS  Google Scholar 

  52. Shioda N, Moriguchi S, Shirasaki Y, Fukunaga K (2006) Generation of constitutively active calcineurin by calpain contributes to delayed neuronal death following mouse brain ischemia. J Neurochem 98:310–320

    PubMed  CAS  Google Scholar 

  53. Bano D, Young KW, Guerin CJ et al (2005) Cleavage of the plasma membrane Na+/Ca2+exchanger in excitotoxicity. Cell 120:275–285

    PubMed  CAS  Google Scholar 

  54. Bezprozvanny I, Watras J, Ehrlich BE (1991) Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351:751–754

    PubMed  CAS  Google Scholar 

  55. Hajnoczky G, Hager R, Thomas AP (1999) Mitochondria suppress local feedback activation of inositol 1,4, 5-trisphosphate receptors by Ca2+. J Biol Chem 274:14157–14162

    PubMed  CAS  Google Scholar 

  56. Jouaville LS, Ichas F, Holmuhamedov EL, Camacho P, Lechleiter JD (1995) Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature 377:438–441

    PubMed  CAS  Google Scholar 

  57. Boehning D, van Rossum DB, Patterson RL, Snyder SH (2005) A peptide inhibitor of cytochrome c/inositol 1,4,5-trisphosphate receptor binding blocks intrinsic and extrinsic cell death pathways. Proc Natl Acad Sci USA

  58. Taylor CW, da Fonseca PC, Morris EP (2004) IP(3) receptors: the search for structure. Trends Biochem Sci 29:210–219

    PubMed  CAS  Google Scholar 

  59. Hamada K, Terauchi A, Mikoshiba K (2003) Three-dimensional rearrangements within inositol 1,4,5-trisphosphate receptor by calcium. J Biol Chem 278:52881–52889

    PubMed  CAS  Google Scholar 

  60. Beresewicz M, Kowalczyk JE, Zablocka B (2006) Cytochrome c binds to inositol (1,4,5) trisphosphate and ryanodine receptors in vivo after transient brain ischemia in gerbils. Neurochem Int 48:568–571

    PubMed  CAS  Google Scholar 

  61. Csordas G, Madesh M, Antonsson B, Hajnoczky G (2002) tcBid promotes Ca(2+) signal propagation to the mitochondria: control of Ca(2+) permeation through the outer mitochondrial membrane. EMBO J 21:2198–2206

    PubMed  CAS  Google Scholar 

  62. Munoz-Pinedo C, Guio-Carrion A, Goldstein JC, Fitzgerald P, Newmeyer DD, Green DR (2006) Different mitochondrial intermembrane space proteins are released during apoptosis in a manner that is coordinately initiated but can vary in duration. Proc Natl Acad Sci USA 103:11573–11578

    PubMed  CAS  Google Scholar 

  63. Sedlak TW, Snyder SH (2006) Messenger molecules and cell death: therapeutic implications. JAMA 295:81–89

    PubMed  CAS  Google Scholar 

  64. Pinton P, Rizzuto R (2006) Bcl-2 and Ca2+ homeostasis in the endoplasmic reticulum. Cell Death Differ 13:1409–1418

    PubMed  CAS  Google Scholar 

  65. Distelhorst CW, Shore GC (2004) Bcl-2 and calcium: controversy beneath the surface. Oncogene 23:2875–2880

    PubMed  CAS  Google Scholar 

  66. Oakes SA, Opferman JT, Pozzan T, Korsmeyer SJ, Scorrano L (2003) Regulation of endoplasmic reticulum Ca2+ dynamics by proapoptotic BCL-2 family members. Biochem Pharmacol 66:1335–1340

    PubMed  CAS  Google Scholar 

  67. Li C, Fox CJ, Master SR, Bindokas VP, Chodosh LA, Thompson CB (2002) Bcl-X(L) affects Ca(2+) homeostasis by altering expression of inositol 1,4,5-trisphosphate receptors. Proc Natl Acad Sci USA 99:9830–9835

    PubMed  CAS  Google Scholar 

  68. Chen R, Valencia I, Zhong F et al (2004) Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. J Cell Biol 166:193–203

    PubMed  CAS  Google Scholar 

  69. Pinton P, Ferrari D, Magalhaes P et al (2000) Reduced loading of intracellular Ca(2+) stores and downregulation of capacitative Ca(2+) influx in Bcl-2-overexpressing cells. J Cell Biol 148:857–862

    PubMed  CAS  Google Scholar 

  70. Basset O, Boittin FX, Cognard C, Constantin B, Ruegg UT (2006) Bcl-2 overexpression prevents calcium overload and subsequent apoptosis in dystrophic myotubes. Biochem J 395:267–276

    PubMed  CAS  Google Scholar 

  71. Oakes SA, Scorrano L, Opferman JT et al (2005) Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Natl Acad Sci USA 102:105–110

    PubMed  CAS  Google Scholar 

  72. Schug ZT, Joseph SK (2006) The role of the S4–S5 linker and C-terminal tail in inositol 1,4,5-trisphosphate receptor function. J Biol Chem 281:24431–24440

    PubMed  CAS  Google Scholar 

  73. Tang TS, Tu H, Wang Z, Bezprozvanny I (2003) Modulation of type 1 inositol (1,4,5)-trisphosphate receptor function by protein kinase a and protein phosphatase 1alpha. J Neurosci 23:403–415

    PubMed  CAS  Google Scholar 

  74. Malissein E, Verdier M, Ratinaud MH, Troutaud D (2006) Activation of Bad trafficking is involved in the BCR-mediated apoptosis of immature B cells. Apoptosis 11:1003–1012

    PubMed  CAS  Google Scholar 

  75. Erin N, Billingsley ML (2004) Domoic acid enhances Bcl-2-calcineurin-inositol-1,4,5-trisphosphate receptor interactions and delayed neuronal death in rat brain slices. Brain Res 1014:45–52

    PubMed  CAS  Google Scholar 

  76. Fiebig AA, Zhu W, Hollerbach C, Leber B, Andrews DW (2006) Bcl-XL is qualitatively different from and ten times more effective than Bcl-2 when expressed in a breast cancer cell line. BMC Cancer 6:213

    PubMed  Google Scholar 

  77. Yamamoto H, Maeda N, Niinobe M, Miyamoto E, Mikoshiba K (1989) Phosphorylation of P400 protein by cyclic AMP-dependent protein kinase and Ca2+/calmodulin-dependent protein kinase II. J Neurochem 53:917–923

    PubMed  CAS  Google Scholar 

  78. Soulsby MD, Wojcikiewicz RJ (2005) The type III inositol 1,4,5-trisphosphate receptor is phosphorylated by cAMP-dependent protein kinase at three sites. Biochem J 392:493–497

    PubMed  CAS  Google Scholar 

  79. Wagner LE, Li WH, Yule DI (2003) Phosphorylation of type-1 inositol 1,4,5-trisphosphate receptors by cyclic nucleotide-dependent protein kinases: a mutational analysis of the functionally important sites in the S2+ and S2− splice variants. J Biol Chem 278:45811–45817

    PubMed  CAS  Google Scholar 

  80. Wagner LE, Li WH, Joseph SK, Yule DI (2004) Functional consequences of phosphomimetic mutations at key cAMP-dependent protein kinase phosphorylation sites in the type 1 inositol 1,4,5-trisphosphate receptor. J Biol Chem 279:46242–46252

    PubMed  CAS  Google Scholar 

  81. Schlossmann J, Ammendola A, Ashman K et al (2000) Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Ibeta. Nature 404:197–201

    PubMed  CAS  Google Scholar 

  82. DeSouza N, Reiken S, Ondrias K, Yang YM, Matkovich S, Marks AR (2002) Protein kinase A and two phosphatases are components of the inositol 1,4,5-trisphosphate receptor macromolecular signaling complex. J Biol Chem 277:39397–39400

    PubMed  CAS  Google Scholar 

  83. Tu H, Tang TS, Wang Z, Bezprozvanny I (2004) Association of type 1 inositol 1,4,5-trisphosphate receptor with AKAP9 (Yotiao) and protein kinase A. J Biol Chem 279:19375–19382

    PubMed  CAS  Google Scholar 

  84. Scorrano L, Oakes SA, Opferman JT et al (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300:135–139

    PubMed  CAS  Google Scholar 

  85. Zhong F, Davis MC, McColl KS, Distelhorst CW (2006) Bcl-2 differentially regulates Ca2+ signals according to the strength of T cell receptor activation. J Cell Biol 172:127–137

    PubMed  CAS  Google Scholar 

  86. Bassik MC, Scorrano L, Oakes SA, Pozzan T, Korsmeyer SJ (2004) Phosphorylation of BCL-2 regulates ER Ca2+ homeostasis and apoptosis. EMBO J 23:1207–1216

    PubMed  CAS  Google Scholar 

  87. Mathai JP, Germain M, Shore GC (2005) BH3-only BIK regulates BAX,BAK-dependent release of Ca2+ from endoplasmic reticulum stores and mitochondrial apoptosis during stress-induced cell death. J Biol Chem 280:23829–23836

    PubMed  CAS  Google Scholar 

  88. Breckenridge DG, Stojanovic M, Marcellus RC, Shore GC (2003) Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol 160:1115–1127

    PubMed  CAS  Google Scholar 

  89. Shi J, Parada LF, Kernie SG (2005) Bax limits adult neural stem cell persistence through caspase and IP3 receptor activation. Cell Death Differ

  90. Lindsten T, Golden JA, Zong WX, Minarcik J, Harris MH, Thompson CB (2003) The proapoptotic activities of Bax and Bak limit the size of the neural stem cell pool. J Neurosci 23:11112–11119

    PubMed  CAS  Google Scholar 

  91. Bare DJ, Kettlun CS, Liang M, Bers DM, Mignery GA (2005) Cardiac type 2 inositol 1,4,5-trisphosphate receptor: interaction and modulation by calcium/calmodulin-dependent protein kinase II. J Biol Chem 280:15912–15920

    PubMed  CAS  Google Scholar 

  92. Vermassen E, Fissore RA, Nadif KN et al (2004) Regulation of the phosphorylation of the inositol 1,4,5-trisphosphate receptor by protein kinase C. Biochem Biophys Res Commun 319:888–893

    PubMed  CAS  Google Scholar 

  93. Malathi K, Li X, Krizanova O et al (2005) Cdc2/cyclin B1 interacts with and modulates inositol 1,4,5-trisphosphate receptor (type 1) functions. J Immunol 175:6205–6210

    PubMed  Google Scholar 

  94. Bai GR, Yang LH, Huang XY, Sun FZ (2006) Inositol 1,4,5-trisphosphate receptor type 1 phosphorylation and regulation by extracellular signal-regulated kinase. Biochem Biophys Res Commun 348:1319–1327

    PubMed  CAS  Google Scholar 

  95. Khan MT, Wagner L, Yule DI, Bhanumathy C, Joseph SK (2006) Akt kinase phosphorylation of inositol 1,4,5-trisphosphate receptors. J Biol Chem 281:3731–3737

    PubMed  CAS  Google Scholar 

  96. Brazil DP, Yang ZZ, Hemmings BA (2004) Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 29:233–242

    PubMed  CAS  Google Scholar 

  97. Kim D, Chung J (2002) Akt: versatile mediator of cell survival and beyond. J Biochem Mol Biol 35:106–115

    PubMed  CAS  Google Scholar 

  98. Szlufcik K, Bultynck G, Callewaert G, Missiaen L, Parys JB, De Smedt H (2006) The suppressor domain of inositol 1,4,5-trisphosphate receptor plays an essential role in the protection against apoptosis. Cell Calcium 39:325–336

    PubMed  CAS  Google Scholar 

  99. Tantral L, Malathi K, Kohyama S, Silane M, Berenstein A, Jayaraman T (2004) Intracellular calcium release is required for caspase-3 and -9 activation. Cell Biochem Funct 22:35–40

    PubMed  CAS  Google Scholar 

  100. van Rossum DB, Patterson RL, Cheung KH et al (2006) DANGER: A novel regulatory protein of IP3-receptor activity. J Biol Chem

  101. Mikoshiba K (2006) Inositol 1,4,5-trisphosphate IP(3) receptors and their role in neuronal cell function. J Neurochem 97:1627–1633

    PubMed  CAS  Google Scholar 

  102. van Rossum DB, Patterson RL, Kiselyov K et al (2004) Agonist-induced Ca2+ entry determined by inositol 1,4,5-trisphosphate recognition. Proc Natl Acad Sci USA 101:2323–2327

    PubMed  CAS  Google Scholar 

  103. Parekh AB, Putney JW, Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810

    PubMed  CAS  Google Scholar 

  104. Dellis O, Dedos SG, Tovey SC, Taufiq UR, Dubel SJ, Taylor CW (2006) Ca2+ entry through plasma membrane IP3 receptors. Science 313:229–233

    PubMed  CAS  Google Scholar 

  105. Greenway AL, Holloway G, McPhee DA, Ellis P, Cornall A, Lidman M (2003) HIV-1 Nef control of cell signalling molecules: multiple strategies to promote virus replication. J Biosci 28:323–335

    Article  PubMed  CAS  Google Scholar 

  106. Manninen A, Saksela K (2002) HIV-1 Nef interacts with inositol trisphosphate receptor to activate calcium signaling in T cells. J Exp Med 195:1023–1032

    PubMed  Google Scholar 

  107. Mattson MP, Haughey NJ, Nath A (2005) Cell death in HIV dementia. Cell Death Differ 12(Suppl 1):893–904

    Google Scholar 

  108. Haughey NJ, Holden CP, Nath A, Geiger JD (1999) Involvement of inositol 1,4,5-trisphosphate-regulated stores of intracellular calcium in calcium dysregulation and neuron cell death caused by HIV-1 protein tat. J Neurochem 73:1363–1374

    PubMed  CAS  Google Scholar 

  109. Stutzmann GE (2005) Calcium dysregulation, IP3 signaling, and Alzheimer's disease. Neuroscientist 11:110–115

    PubMed  CAS  Google Scholar 

  110. Smith IF, Green KN, Laferla FM (2005) Calcium dysregulation in Alzheimer's disease: recent advances gained from genetically modified animals. Cell Calcium 38:427–437

    PubMed  CAS  Google Scholar 

  111. Stutzmann GE, Smith I, Caccamo A, Oddo S, Laferla FM, Parker I (2006) Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged Alzheimer's disease mice. J Neurosci 26:5180–5189

    PubMed  CAS  Google Scholar 

  112. Tu H, Nelson O, Bezprozvanny A et al (2006) Presenilins form ER Ca(2+) leak channels, a function disrupted by familial alzheimer's disease-linked mutations. Cell 126:981–993

    PubMed  CAS  Google Scholar 

  113. Kasri NN, Kocks SL, Verbert L et al (2006) Up-regulation of inositol 1,4,5-trisphosphate receptor type 1 is responsible for a decreased endoplasmic-reticulum Ca2+ content in presenilin double knock-out cells. Cell Calcium 40:41–51

    PubMed  CAS  Google Scholar 

  114. Leissring MA, Parker I, Laferla FM (1999) Presenilin-2 mutations modulate amplitude and kinetics of inositol 1,4,5-trisphosphate-mediated calcium signals. J Biol Chem 274:32535–32538

    PubMed  CAS  Google Scholar 

  115. Wolozin B, Iwasaki K, Vito P et al (1996) Participation of presenilin 2 in apoptosis: enhanced basal activity conferred by an Alzheimer mutation. Science 274:1710–1713

    PubMed  CAS  Google Scholar 

  116. Cai C, Lin P, Cheung KH et al (2006) The presenilin-2 loop peptide perturbs intracellular Ca2+ homeostasis and accelerates apoptosis. J Biol Chem 281:16649–16655

    PubMed  CAS  Google Scholar 

  117. Tang TS, Tu H, Chan EY et al (2003) Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron 39:227–239

    PubMed  CAS  Google Scholar 

  118. Tang TS, Tu H, Orban PC, Chan EY, Hayden MR, Bezprozvanny I (2004) HAP1 facilitates effects of mutant huntingtin on inositol 1,4,5-trisphosphate-induced Ca release in primary culture of striatal medium spiny neurons. Eur J Neurosci 20:1779–1787

    PubMed  Google Scholar 

  119. Tang TS, Slow E, Lupu V et al (2005) Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington's disease. Proc Natl Acad Sci USA 102:2602–2607

    PubMed  CAS  Google Scholar 

  120. Li Q, Verma IM (2002) NF-kappaB regulation in the immune system. Nat Rev Immunol 2:725–734

    PubMed  CAS  Google Scholar 

  121. Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436

    PubMed  CAS  Google Scholar 

  122. Burstein E, Duckett CS (2003) Dying for NF-kappaB? Control of cell death by transcriptional regulation of the apoptotic machinery. Curr Opin Cell Biol 15:732–737

    PubMed  CAS  Google Scholar 

  123. Glazner GW, Camandola S, Geiger JD, Mattson MP (2001) Endoplasmic reticulum D-myo-inositol 1,4,5-trisphosphate-sensitive stores regulate nuclear factor-kappaB binding activity in a calcium-independent manner. J Biol Chem 276:22461–22467

    PubMed  CAS  Google Scholar 

  124. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    PubMed  CAS  Google Scholar 

  125. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    PubMed  CAS  Google Scholar 

  126. Haworth RA, Hunter DR (1979) The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch Biochem Biophys 195:460–467

    PubMed  CAS  Google Scholar 

  127. Szalai G, Krishnamurthy R, Hajnoczky G (1999) Apoptosis driven by IP(3)-linked mitochondrial calcium signals. EMBO J 18:6349–6361

    PubMed  CAS  Google Scholar 

  128. Pinton P, Ferrari D, Rapizzi E, Di Virgilio F, Pozzan T, Rizzuto R (2001) The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: Significance for the molecular mechanism of Bcl-2 action. EMBO J 20:2690–2701

    PubMed  CAS  Google Scholar 

  129. Ichas F, Jouaville LS, Sidash SS, Mazat JP, Holmuhamedov EL (1994) Mitochondrial calcium spiking: A transduction mechanism based on calcium-induced permeability transition involved in cell calcium signalling. FEBS Lett 348:211–215

    PubMed  CAS  Google Scholar 

  130. Kroner H (1986) Ca2+ ions, an allosteric activator of calcium uptake in rat liver mitochondria. Arch Biochem Biophys 251:525–535

    PubMed  CAS  Google Scholar 

  131. Csordas G, Hajnoczky G (2003) Plasticity of mitochondrial calcium signaling. J Biol Chem 278:42273–42282

    PubMed  CAS  Google Scholar 

  132. Hajnoczky G, Davies E, Madesh M (2003) Calcium signaling and apoptosis. Biochem Biophys Res Commun 304:445–454

    PubMed  CAS  Google Scholar 

  133. Simpson PB, Mehotra S, Lange GD, Russell JT (1997) High density distribution of endoplasmic reticulum proteins and mitochondria at specialized Ca2+ release sites in oligodendrocyte processes. J Biol Chem 272:22654–22661

    PubMed  CAS  Google Scholar 

  134. Csordas G, Hajnoczky G (2001) Sorting of calcium signals at the junctions of endoplasmic reticulum and mitochondria. Cell Calcium 29:249–262

    PubMed  CAS  Google Scholar 

  135. Arnaudeau S, Frieden M, Nakamura K, Castelbou C, Michalak M, Demaurex N (2002) Calreticulin differentially modulates calcium uptake and release in the endoplasmic reticulum and mitochondria. J Biol Chem 277:46696–46705

    PubMed  CAS  Google Scholar 

  136. Csordas G, Thomas AP, Hajnoczky G (1999) Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J 18:96–108

    PubMed  CAS  Google Scholar 

  137. Lin X, Varnai P, Csordas G et al (2005) Control of calcium signal propagation to the mitochondria by inositol 1,4,5-trisphosphate-binding proteins. J Biol Chem 280:12820–12832

    PubMed  CAS  Google Scholar 

  138. Zhu L, Ling S, Yu XD et al (1999) Modulation of mitochondrial Ca(2+) homeostasis by Bcl-2. J Biol Chem 274:33267–33273

    PubMed  CAS  Google Scholar 

  139. Park MK, Ashby MC, Erdemli G, Petersen OH, Tepikin AV (2001) Perinuclear, perigranular and sub-plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport. EMBO J 20:1863–1874

    PubMed  CAS  Google Scholar 

  140. Collins TJ, Lipp P, Berridge MJ, Bootman MD (2001) Mitochondrial Ca(2+) uptake depends on the spatial and temporal profile of cytosolic Ca(2+) signals. J Biol Chem 276:26411–26420

    PubMed  CAS  Google Scholar 

  141. Rizzuto R, Pinton P, Carrington W et al (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766

    PubMed  CAS  Google Scholar 

  142. Nicholls DG (2005) Mitochondria and calcium signaling. Cell Calcium 38:311–317

    PubMed  CAS  Google Scholar 

  143. Putney JW, Jr., Thomas AP (2006) Calcium signaling: double duty for calcium at the mitochondrial uniporter. Curr Biol 16:R812–R815

    PubMed  CAS  Google Scholar 

  144. Gunter TE, Yule DI, Gunter KK, Eliseev RA, Salter JD (2004) Calcium and mitochondria. FEBS Lett 567:96–102

    PubMed  CAS  Google Scholar 

  145. Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262:744–747

    PubMed  CAS  Google Scholar 

  146. Neher E (1998) Usefulness and limitations of linear approximations to the understanding of Ca++ signals. Cell Calcium 24:345–357

    PubMed  CAS  Google Scholar 

  147. Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364

    PubMed  CAS  Google Scholar 

  148. Csordas G, Renken C, Varnai P et al (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174:915–921

    PubMed  CAS  Google Scholar 

  149. Frieden M, James D, Castelbou C, Danckaert A, Martinou JC, Demaurex N (2004) Ca(2+) homeostasis during mitochondrial fragmentation and perinuclear clustering induced by hFis1. J Biol Chem 279:22704–22714

    PubMed  CAS  Google Scholar 

  150. Rutter GA (2006) Moving Ca2+ from the endoplasmic reticulum to mitochondria: is spatial intimacy enough? Biochem Soc Trans 34:351–355

    PubMed  CAS  Google Scholar 

  151. Shore GC, Tata JR (1977) Two fractions of rough endoplasmic reticulum from rat liver. I. Recovery of rapidly sedimenting endoplasmic reticulum in association with mitochondria. J Cell Biol 72:714–725

    PubMed  CAS  Google Scholar 

  152. Mannella CA, Buttle K, Rath BK, Marko M (1998) Electron microscopic tomography of rat-liver mitochondria and their interaction with the endoplasmic reticulum. Biofactors 8:225–828

    PubMed  CAS  Google Scholar 

  153. Maeda N, Niinobe M, Inoue Y, Mikoshiba K (1989) Developmental expression and intracellular location of P400 protein. Dev Biol 133:67–76

    PubMed  CAS  Google Scholar 

  154. Szabadkai G, Bianchi K, Varnai P et al (2006) Chaperone mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol

  155. Rapizzi E, Pinton P, Szabadkai G et al (2002) Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. J Cell Biol 159:613–624

    PubMed  CAS  Google Scholar 

  156. Furuichi T, Kohda K, Miyawaki A, Mikoshiba K (1994) Intracellular channels. Curr Opin Neurobiol 4:294–303

    PubMed  CAS  Google Scholar 

  157. Bosanac I, Yamazaki H, Matsu-ura T, Michikawa T, Mikoshiba K, Ikura M (2005) Crystal structure of the ligand binding suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor. Mol Cell 17:193–203

    PubMed  CAS  Google Scholar 

  158. Pitts KR, Yoon Y, Krueger EW, McNiven MA (1999) The dynamin-like protein DLP1 is essential for normal distribution and morphology of the endoplasmic reticulum and mitochondria in mammalian cells. Mol Biol Cell 10:4403–4417

    PubMed  CAS  Google Scholar 

  159. Varadi A, Cirulli V, Rutter GA (2004) Mitochondrial localization as a determinant of capacitative Ca2+ entry in HeLa cells. Cell Calcium 36:499–508

    PubMed  CAS  Google Scholar 

  160. Wang HJ, Guay G, Pogan L, Sauve R, Nabi IR (2000) Calcium regulates the association between mitochondria and a smooth subdomain of the endoplasmic reticulum. J Cell Biol 150:1489–1498

    PubMed  CAS  Google Scholar 

  161. Simmen T, Aslan JE, Blagoveshchenskaya AD et al (2005) PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J 24:717–729

    PubMed  CAS  Google Scholar 

  162. Szabadkai G, Simoni AM, Chami M, Wieckowski MR, Youle RJ, Rizzuto R (2004) Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol Cell 16:59–68

    PubMed  CAS  Google Scholar 

  163. Germain M, Mathai JP, McBride HM, Shore GC (2005) Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis. EMBO J 24:1546–1556

    PubMed  CAS  Google Scholar 

  164. Frank S, Gaume B, Bergmann-Leitner ES et al (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525

    PubMed  CAS  Google Scholar 

  165. Karbowski M, Lee YJ, Gaume B et al (2002) Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol 159:931–938

    PubMed  CAS  Google Scholar 

  166. Szabadkai G, Simoni AM, Bianchi K et al (2006) Mitochondrial dynamics and Ca2+ signaling. Biochim Biophys Acta 1763:442–449

    PubMed  CAS  Google Scholar 

  167. Hollenbeck PJ, Saxton WM (2005) The axonal transport of mitochondria. J Cell Sci 118:5411–5419

    PubMed  CAS  Google Scholar 

  168. Shibata Y, Voeltz GK, Rapoport TA (2006) Rough sheets and smooth tubules. Cell 126:435–439

    PubMed  CAS  Google Scholar 

  169. Yi M, Weaver D, Hajnoczky G (2004) Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J Cell Biol 167:661–672

    PubMed  CAS  Google Scholar 

  170. Rintoul GL, Filiano AJ, Brocard JB, Kress GJ, Reynolds IJ (2003) Glutamate decreases mitochondrial size and movement in primary forebrain neurons. J Neurosci 23:7881–7888

    PubMed  CAS  Google Scholar 

  171. Brough D, Schell MJ, Irvine RF (2005) Agonist-induced regulation of mitochondrial and endoplasmic reticulum motility. Biochem J 392:291–297

    PubMed  CAS  Google Scholar 

  172. Rintoul GL, Bennett VJ, Papaconstandinou NA, Reynolds IJ (2006) Nitric oxide inhibits mitochondrial movement in forebrain neurons associated with disruption of mitochondrial membrane potential. J Neurochem 97:800–806

    PubMed  CAS  Google Scholar 

  173. Boldogh IR, Pon LA (2006) Interactions of mitochondria with the actin cytoskeleton. Biochim Biophys Acta 1763:450–462

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Pathology & Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA

    Suresh K. Joseph & György Hajnóczky

Authors
  1. Suresh K. Joseph
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. György Hajnóczky
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to György Hajnóczky.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Joseph, S.K., Hajnóczky, G. IP3 receptors in cell survival and apoptosis: Ca2+ release and beyond. Apoptosis 12, 951–968 (2007). https://doi.org/10.1007/s10495-007-0719-7

Download citation

  • Published: 06 February 2007

  • Issue Date: May 2007

  • DOI: https://doi.org/10.1007/s10495-007-0719-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Apoptosis
  • Calcium
  • Endoplasmic reticulum
  • IP3
  • IP3 receptor
  • Mitochondria
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 95.216.99.153

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.