Skip to main content

Advertisement

Log in

Contribution of membrane localization to the apoptotic activity of PUMA

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

An Erratum to this article was published on 08 November 2012

Abstract

The BH3-only protein PUMA plays an important role in the activation of apoptosis in response to p53. In different studies, PUMA has been described to function by either directly activating the pro-apoptotic proteins Bax and Bak, or by neutralizing anti-apoptotic members of the Bcl2 family. We have examined the contribution of regions of PUMA other than the BH3 domain to its localization and function. Although the hydrophobic domain in the C-terminus of PUMA is necessary for efficient mitochondrial localization of PUMA itself, PUMA proteins lacking this region can still induce apoptosis and localize to the mitochondria through binding to Bcl2. Even a nuclear localization signal (NLS)-tagged PUMA protein retains apoptotic activity and can be efficiently relocalized from the nucleus after interaction with ectopically expressed Bcl2, underscoring the efficiency of this interaction. Interestingly, unlike the Bcl2 interaction, the binding of PUMA to Bax is severely compromised by the loss of the C-terminal domain of PUMA. However, since the loss of the C-terminus does not compromise the ability of PUMA to induce cell death, our results indicate that the key apoptotic function of PUMA is through interaction with anti-apoptotic proteins such as Bcl2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  2. Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411:342–348

    Article  PubMed  CAS  Google Scholar 

  3. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  PubMed  CAS  Google Scholar 

  4. Hajra KM, Liu JR (2004) Apoptosome dysfunction in human cancer. Apoptosis 9:691–704

    Article  PubMed  CAS  Google Scholar 

  5. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656

    Article  PubMed  CAS  Google Scholar 

  6. Puthalakath H, Strasser A (2002) Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activitive of BH3-only proteins. Cell Death Diff 9:505–512

    Article  CAS  Google Scholar 

  7. Mihara M et al (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11:577–590

    Article  PubMed  CAS  Google Scholar 

  8. Chipuk JE et al (2005) PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309:1732–1735

    Article  PubMed  CAS  Google Scholar 

  9. Yee KS, Vousden KH (2005) Complicating the complexity of p53. Carcinogenesis 26:1317–1322

    Article  PubMed  CAS  Google Scholar 

  10. Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604

    Article  PubMed  CAS  Google Scholar 

  11. Nakano K, Vousden KH (2001) PUMA, a novel pro-apopototic gene, is induced by p53. Mol Cell 7:683–694

    Article  PubMed  CAS  Google Scholar 

  12. Yu J et al (2003) PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci USA 100:1931–1936

    Article  PubMed  CAS  Google Scholar 

  13. Jeffers JR et al (2003) Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4:321–3238

    Article  PubMed  CAS  Google Scholar 

  14. Villunger A. et al (2003) p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 302:1036–1038

    Article  PubMed  CAS  Google Scholar 

  15. Hemann MT et al (2004) Suppression of tumorigenesis by the p53 target PUMA. Proc Natl Acad Sci USA 101:9333–9338

    Article  PubMed  CAS  Google Scholar 

  16. Letai A et al (2002) Distinctive BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2:183–192

    Article  PubMed  CAS  Google Scholar 

  17. Chittenden T, (2002) BH3 domains: intracellular death-ligands critical for initiating apoptosis. Cancer Cell 2:165–166

    Article  PubMed  CAS  Google Scholar 

  18. Marani M et al (2002) Identification of novel isoforms of the BH3 domain proteins Bim which directly activate Bax to trigger apoptosis. Mol Cell Biol 22:3577–3589

    Article  PubMed  CAS  Google Scholar 

  19. Eskes R et al (2000) Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 20:929–935

    Article  PubMed  CAS  Google Scholar 

  20. Desagher S et al (1999) Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144:891–901

    Article  PubMed  CAS  Google Scholar 

  21. Kuwana T et al (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17:525–535

    Article  PubMed  CAS  Google Scholar 

  22. Cartron PF et al (2004) The first alpha helix of Bax plays a necessary role in its ligand-induced activation by the BH3-only proteins Bid and PUMA. Mol Cell 16:807–818

    Article  PubMed  CAS  Google Scholar 

  23. Kim H et al (2006) Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol 8:1348–1358

    Article  PubMed  CAS  Google Scholar 

  24. Willis SN et al (2007) Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315:856–859

    Article  PubMed  CAS  Google Scholar 

  25. Chen L et al (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17:393–403

    Article  PubMed  CAS  Google Scholar 

  26. Willis SN et al (2005) Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 19:1294–1305

    Article  PubMed  CAS  Google Scholar 

  27. Willis SN, Adams JM (2005) Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol 17:617–625

    Article  PubMed  CAS  Google Scholar 

  28. Walensky LD et al (2004) Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305:1466–1470

    Article  PubMed  CAS  Google Scholar 

  29. Oltersdorf T et al (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumors. Nature 435:677–681

    Article  PubMed  CAS  Google Scholar 

  30. Morgenstern JP, Land H (1990) Advanced mammalian gene transfer: high titre retroviral vectors with multipledrug selection markers and a complementary helper-freee packaging cell line. Nuc Acids Res 18:3587–3596

    Article  CAS  Google Scholar 

  31. Rowan S et al (1996) Specific loss of apoptotic but not cell cycle arrest function in a human tumour derived p53 mutant. EMBO J 15:827–838

    PubMed  CAS  Google Scholar 

  32. Ray R et al (2000) BNIP3 heterodimerized with Bcl-2/Bcl-X(L) and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites. J Biol Chem 275:1439–1448

    Article  PubMed  CAS  Google Scholar 

  33. Ke N, Godzik A, Reed JC (2001) BclB, a novel Bcl-2 family member that differentially binds and regulates Bax and Bak. J Biol Chem 276:12481–12484

    Article  PubMed  CAS  Google Scholar 

  34. U M et al (2001) Molecular cloning and characterization of six novel isoforms of human Bim, a member of the proapoptotic Bcl-2 family. FEBS Lett 509:135–141

    Article  PubMed  CAS  Google Scholar 

  35. Melino G et al (2004) p73 induces apoptosis via PUMA transactivation and Bax mitochondrial translocation. J Biol Chem 279: 8076–8083

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Drs Eileen White and Wei-Xing Zong for the tBid and Bad plasmids, respectively. This work was funded by Cancer Research-UK and a generous fellowship from the West of Scotland Women’s Bowling Association, to support KSY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen H. Vousden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yee, K.S., Vousden, K.H. Contribution of membrane localization to the apoptotic activity of PUMA. Apoptosis 13, 87–95 (2008). https://doi.org/10.1007/s10495-007-0140-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0140-2

Keywords

Navigation