Skip to main content
Log in

Bioinformatic and image analyses of the cellular localization of the apoptotic proteins endonuclease G, AIF, and AMID during apoptosis in human cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

We studied the cellular localization of the apoptotic proteins endonuclease G, AIF, and AMID in silico using three prediction tools and in living cells using both single-cell colocalization image analysis and nuclear translocation analysis. We confirmed the mitochondrial localization of endonuclease G and AIF by prediction analysis and by single-cell colocalization image analysis. We found the AMID protein to be cytoplasmic, most probably incorporated into the cytoplasmic side of the membranes of various organelles. The highest concentration of AMID was observed associated with the Golgi. Colocalization of AMID with lysosomes was also indirectly confirmed by analysis of AMID-rich vesicle velocity using manual tracking analysis. Bioinformatic analysis also detected nuclear localization signals in endonuclease G and AIF, but not in AMID. A novel analysis of time-lapse fluorescence image data during staurosporine-induced apoptosis revealed nuclear translocation only for endonuclease G and AIF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AIF:

apoptosis-inducing factor

AMID:

AIF-homologous mitochondrion-associated inducer of death

endoG:

endonuclease G

EYFP:

enhanced yellow fluorescent protein

MLS:

mitochondrial localization sequence

P :

calculated probability

PDM:

product of the differences from the mean

R :

Mander’s overlap coefficient

ROI:

region of interest

Rr :

Pearson’s correlation coefficient

STS:

staurosporine

tHcRed:

tandem of two connected far-red fluorescent proteins from Heteractis crispa

References

  1. Patterson SD, Spahr CS, Daugas E et al (2000) Mass spectrometric identification of proteins released from mitochondria undergoing permeability transition. Cell Death Differ 7:137–144

    Article  PubMed  CAS  Google Scholar 

  2. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    Article  PubMed  CAS  Google Scholar 

  3. Susin SA, Zamzami N, Castedo M et al (1996) Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 184:1331–1341

    Article  PubMed  CAS  Google Scholar 

  4. Zamzami N, Susin SA, Marchetti P et al (1996) Mitochondrial control of nuclear apoptosis. J Exp Med 183:1533–1544

    Article  PubMed  CAS  Google Scholar 

  5. Susin SA, Lorenzo HK, Zamzami N et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    Article  PubMed  CAS  Google Scholar 

  6. Uren RT, Dewson G, Bonzon C, Lithgow T, Newmeyer DD, Kluck RM (2005) Mitochondrial release of pro-apoptotic proteins: electrostatic interactions can hold cytochrome c but not Smac/DIABLO to mitochondrial membranes. J Biol Chem 280:2266–2274

    Article  PubMed  CAS  Google Scholar 

  7. Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99

    Article  PubMed  CAS  Google Scholar 

  8. Wu M, Xu L, Li X, Zhai Z, Shu H (2002) AMID, an apoptosis-inducing factor-homologous mitochondrion-associated protein, induces caspase-independent apoptosis. J Biol Chem 277:25617–25623

    Article  PubMed  CAS  Google Scholar 

  9. Widlak P, Li LY, Wang X, Garrard WT (2001) Action of recombinant human apoptotic endonuclease G on naked DNA and chromatin substrates: cooperation with exonuclease and DNase I. J Biol Chem 276:48404–48409

    PubMed  CAS  Google Scholar 

  10. Earnshaw WC (1995) Nuclear changes in apoptosis. Curr Opin Cell Biol 7:337–343

    Article  PubMed  CAS  Google Scholar 

  11. Oberhammer F, Wilson JW, Dive C et al (1993) Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J 12:3679–3684

    PubMed  CAS  Google Scholar 

  12. Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555–556

    Article  PubMed  CAS  Google Scholar 

  13. Zanna C, Ghelli A, Porcelli AM, Martinuzzi A, Carelli V, Rugolo M (2005) Caspase-independent death of Leber’s hereditary optic neuropathy cybrids is driven by energetic failure and mediated by AIF and Endonuclease G. Apoptosis 10:997–1007

    Article  PubMed  CAS  Google Scholar 

  14. Gerschenson M, Houmiel KL, Low RL (1995) Endonuclease G from mammalian nuclei is identical to the major endonuclease of mitochondria. Nucleic Acids Res 23:88–97

    Article  PubMed  CAS  Google Scholar 

  15. Ohsato T, Ishihara N, Muta T et al (2002) Mammalian mitochondrial endonuclease G. Digestion of R-loops and localization in intermembrane space. Eur J Biochem 269:5765–5770

    Article  PubMed  CAS  Google Scholar 

  16. Zhang J, Dong M, Li L et al (2003) Endonuclease G is required for early embryogenesis and normal apoptosis in mice. Proc Natl Acad Sci USA 100:15782–15787

    Article  PubMed  CAS  Google Scholar 

  17. Cote J, Ruiz-Carrillo A (1993) Primers for mitochondrial DNA replication generated by endonuclease G. Science 261:765–769

    Article  PubMed  CAS  Google Scholar 

  18. Hahn HP, Pang M, He J et al (2004) Galectin-1 induces nuclear translocation of endonuclease G in caspase- and cytochrome c-independent T cell death. Cell Death Differ 11:1277–1286

    Article  PubMed  CAS  Google Scholar 

  19. Takano J, Tomioka M, Tsubuki S et al (2005) Calpain mediates excitotoxic DNA fragmentation via mitochondrial pathways in adult brains: evidence from calpastatin mutant mice. J Biol Chem 280:16175–16184

    Article  PubMed  CAS  Google Scholar 

  20. Otera H, Ohsakaya S, Nagaura Z, Ishihara N, Mihara K (2005) Export of mitochondrial AIF in response to proapoptotic stimuli depends on processing at the intermembrane space. EMBO J 24:1375–1386

    Article  PubMed  CAS  Google Scholar 

  21. Klein JA, Longo-Guess CM, Rossmann MP et al (2002) The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 419:367–374

    Article  PubMed  CAS  Google Scholar 

  22. Daugas E, Susin SA, Zamzami N et al (2000) Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J 14:729–739

    PubMed  CAS  Google Scholar 

  23. Fonfria E, Dare E, Benelli M, Sunol C, Ceccatelli S (2002) Translocation of apoptosis-inducing factor in cerebellar granule cells exposed to neurotoxic agents inducing oxidative stress. Eur J Neurosci 16:2013–2016

    Article  PubMed  CAS  Google Scholar 

  24. Murahashi H, Azuma H, Zamzami N et al (2003) Possible contribution of apoptosis-inducing factor (AIF) and reactive oxygen species (ROS) to UVB-induced caspase-independent cell death in the T cell line Jurkat. J Leukoc Biol 73:399–406

    Article  PubMed  CAS  Google Scholar 

  25. Baud O, Li J, Zhang Y, Neve RL, Volpe JJ, Rosenberg PA (2004) Nitric oxide-induced cell death in developing oligodendrocytes is associated with mitochondrial dysfunction and apoptosis-inducing factor translocation. Eur J Neurosci 20:1713–1726

    Article  PubMed  Google Scholar 

  26. Fukami T, Nakasu S, Baba K, Nakajima M, Matsuda M (2004) Hyperthermia induces translocation of apoptosis-inducing factor (AIF) and apoptosis in human glioma cell lines. J Neurooncol 70:319–331

    Article  PubMed  Google Scholar 

  27. Plesnila N (2004) Role of mitochondrial proteins for neuronal cell death after focal cerebral ischemia. Acta Neurochir Suppl 89:15–19

    PubMed  CAS  Google Scholar 

  28. Furre IE, Shahzidi S, Luksiene Z et al (2005) Targeting PBR by hexaminolevulinate-mediated photodynamic therapy induces apoptosis through translocation of apoptosis-inducing factor in human leukemia cells. Cancer Res 65:11051–11060

    Article  PubMed  CAS  Google Scholar 

  29. Wang X, Yang C, Chai J, Shi Y, Xue D (2002) Mechanisms of AIF-mediated apoptotic DNA degradation in Caenorhabditis elegans. Science 298:1587–1592

    Article  PubMed  CAS  Google Scholar 

  30. Vahsen N, Cande C, Dupaigne P et al (2006) Physical interaction of apoptosis-inducing factor with DNA and RNA. Oncogene 25:1763–1774

    Article  PubMed  CAS  Google Scholar 

  31. Ohiro Y, Garkavtsev I, Kobayashi S et al (2002) A novel p53-inducible apoptogenic gene, PRG3, encodes a homologue of the apoptosis-inducing factor (AIF). FEBS Lett 524:163–171

    Article  PubMed  CAS  Google Scholar 

  32. Wu M, Xu L, Su T, Tian Y, Zhai Z, Shu H (2004) AMID is a p53-inducible gene downregulated in tumors. Oncogene 23:6815–6819

    Article  PubMed  CAS  Google Scholar 

  33. Morrison DA (1977) Transformation in Escherichia coli: cryogenic preservation of competent cells. J Bacteriol 132:349–351

    PubMed  CAS  Google Scholar 

  34. Nakai K, Kanehisa M (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14:897–911

    Article  PubMed  CAS  Google Scholar 

  35. Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–36

    Article  PubMed  CAS  Google Scholar 

  36. Horton P, Park K, Obayashi T, Nakai K (2006) Protein Subcellular Localization Prediction with WoLF PSORT. Proceedings of Asian Pacific Bioinformatics Conference 2006

  37. Hoglund A, Donnes P, Blum T, Adolph H, Kohlbacher O (2006) MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition. Bioinformatics 22:1158–1165

    Article  PubMed  CAS  Google Scholar 

  38. Kozubek M, Kozubek S, Lukasova E et al (1999) High-resolution cytometry of FISH dots in interphase cell nuclei. Cytometry 36:279–293

    Article  PubMed  CAS  Google Scholar 

  39. Kozubek M, Kozubek S, Lukasova E et al (2001) Combined confocal and wide-field high-resolution cytometry of fluorescent in situ hybridization-stained cells. Cytometry 45:1–12

    Article  PubMed  CAS  Google Scholar 

  40. Kozubek M, Matula P, Matula P, Kozubek S (2004) Automated acquisition and processing of multidimensional image data in confocal in vivo microscopy. Microsc Res Tech 64:164–175

    Article  PubMed  Google Scholar 

  41. Dougherty R (2005) Extensions of DAMAS and benefits and limitations of deconvolution in beamforming. AIAA 2961

  42. Li Q, Lau A, Morris TJ, Guo L, Fordyce CB, Stanley EF (2004) A syntaxin 1, Galpha(o), and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization. J Neurosci 24:4070–4081

    Article  PubMed  CAS  Google Scholar 

  43. Thévenaz P, Ruttimann UE, Unser M (1998) A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process 7(1):27–41

    Article  Google Scholar 

  44. Hanley QS, Verveer PJ, Arndt-Jovin DJ, Jovin TM (2000) Three-dimensional spectral imaging by hadamard transform spectroscopy in a programmable array microscope. J Microsc 197:5–14

    Article  PubMed  CAS  Google Scholar 

  45. McGeoch DJ (1985) On the predictive recognition of signal peptide sequences. Virus Res 3:271–286

    Article  PubMed  CAS  Google Scholar 

  46. von Heijne G (1986) A new method for predicting signal sequence cleavage sites. Nucleic Acids Res 14:4683–4690

    Article  PubMed  CAS  Google Scholar 

  47. Hicks GR, Raikhel NV (1995) Protein import into the nucleus: an integrated view. Annu Rev Cell Dev Biol 11:155–188

    Article  PubMed  CAS  Google Scholar 

  48. Johnson DR, Bhatnagar RS, Knoll LJ, Gordon JI (1994) Genetic and biochemical studies of protein N-myristoylation. Annu Rev Biochem 63:869–914

    Article  PubMed  CAS  Google Scholar 

  49. Borgese N, Aggujaro D, Carrera P, Pietrini G, Bassetti M (1996) A role for N-myristoylation in protein targeting: NADH-cytochrome b5 reductase requires myristic acid for association with outer mitochondrial but not ER membranes. J Cell Biol 135:1501–1513

    Article  PubMed  CAS  Google Scholar 

  50. Bologna G, Yvon C, Duvaud S, Veuthey A (2004) N-Terminal myristoylation predictions by ensembles of neural networks. Proteomics 4:1626–1632

    Article  PubMed  CAS  Google Scholar 

  51. Maurer-Stroh S, Eisenhaber B, Eisenhaber F (2002) N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence. J Mol Biol 317:541–557

    Article  PubMed  CAS  Google Scholar 

  52. Lorenzo HK, Susin SA (2004) Mitochondrial effectors in caspase-independent cell death. FEBS Lett 557:14–20

    Article  PubMed  CAS  Google Scholar 

  53. Arnoult D, Gaume B, Karbowski M, Sharpe JC, Cecconi F, Youle RJ (2003) Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO J 22:4385–4399

    Article  PubMed  CAS  Google Scholar 

  54. Arnoult D, Parone P, Martinou J, Antonsson B, Estaquier J, Ameisen JC (2002) Mitochondrial release of apoptosis-inducing factor occurs downstream of cytochrome c release in response to several proapoptotic stimuli. J Cell Biol 159:923–929

    Article  PubMed  CAS  Google Scholar 

  55. Widlak P, Garrard WT (2005) Discovery, regulation, and action of the major apoptotic nucleases DFF40/CAD and endonuclease G. J Cell Biochem 94:1078–1087

    Article  PubMed  CAS  Google Scholar 

  56. Cordonnier MN, Dauzonne D, Louvard D, Coudrier E (2001) Actin filaments and myosin I alpha cooperate with microtubules for the movement of lysosomes. Mol Biol Cell 12:4013–4029

    PubMed  CAS  Google Scholar 

  57. Luzio JP, Rous BA, Bright NA, Pryor PR, Mullock BM, Piper RC (2000) Lysosome-endosome fusion and lysosome biogenesis. J Cell Sci 113(Pt 9):1515–1524

    PubMed  CAS  Google Scholar 

  58. Mei J, Webb S, Zhang B, Shu H (2006) The p53-inducible apoptotic protein AMID is not required for normal development and tumor suppression. Oncogene 25:849–856

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Reddel from Children’s Medical Research Institute in Sydney (Australia) for the generous gift of the U-2 OS cell line; Pavel Matula for software optimizations; Vladan Ondřej and Stanislav Kozubek for help and valuable advice. This work was supported by the Grant Agency of the Czech Republic (grant numbers 202/04/0907, 204/03/D031, and 204/05/P090) and by The Ministry of Education, Youth and Sports of the Czech Republic (project numbers MSM0021622419 and LC535).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Vařecha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vařecha, M., Amrichová, J., Zimmermann, M. et al. Bioinformatic and image analyses of the cellular localization of the apoptotic proteins endonuclease G, AIF, and AMID during apoptosis in human cells. Apoptosis 12, 1155–1171 (2007). https://doi.org/10.1007/s10495-007-0061-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0061-0

Keywords

Navigation