Skip to main content
Log in

Role of Src-specific phosphorylation site on focal adhesion kinase for senescence-associated apoptosis resistance

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

A decreased apoptotic response toward noxious stress is an issuing characteristic of the aging phenotype. Hydrogen peroxide or staurosporine induced apoptosis readily in young cells but not in senescent cells. We showed that focal adhesion kinase (FAK) expression and its phosphorylation at Tyr397, autophosphorylation site for focal adhesion formation, and Tyr577, Src-dependent phosphorylation site, were both increased in senescent cells. Moreover, FAK was inactivated proteolytically by apoptotic stimuli in young cells, but not in senescent cells. In addition, senescent cells whose FAK expression was downregulated by siRNA showed the increased level of apoptosis by staurosporine treatment via caspase-3 activation but not by hydrogen peroxide treatment. Interestingly dephosphorylation at Tyr577 of FAK by PP2 treatment, Src-family kinase inhibitor, induced the apoptosis by staurosporine in senescent cells but dephosphorylation at Tyr397 by downregulation of caveolin-1 was not affected. These data suggest that FAK might differently regulate apoptosis and focal adhesion formation through site-specific tyrosine phosphorylation in senescent cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FAK::

focal adhesion kinase

HDF::

human diploid fibroblast

SA-β Gal::

senescence associated β-galactosidase

MTT::

3-(4,5-dimethylthiazal-z-yl)-2,5-diphenylterazolium

FACS::

fluorescence-activated cell sorter

PARP::

poly(ADP-ribose)polymerase;

siRNA::

small interfering RNA.

References

  1. Ahn JS, Jang IS, Rhim JH, Kim K, Yeo EJ, Park SC. Gelsolin for senescence-associated resistance to apoptosis. Ann NY Acad Sci 2003; 1010: 493–495.

    Article  CAS  PubMed  Google Scholar 

  2. Kornberg L, Earp HS, Parsons JT, Schaller M, Juliano RL. Cell adhesion or integrin clustering increases phosphorylation of a focal adhesion-associated tyrosine kinase. J Biol Chem 1992; 267: 23439–23442.

    CAS  PubMed  Google Scholar 

  3. Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR, Parsons JT. Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol Cell Biol 1994; 14: 1680–1688.

    CAS  PubMed  Google Scholar 

  4. Tachibana K, Sato T, D'Avirro N, Morimoto C. Direct association of pp125FAK with paxillin, the focal adhesion-targeting mechanism of pp125FAK. J Exp Med 1995; 182: 1089–1099.

    Article  CAS  PubMed  Google Scholar 

  5. Schlaepfer DD, Hanks SK, Hunter T, van der Geer P. Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 1994; 372: 786–791.

    CAS  PubMed  Google Scholar 

  6. Kharbanda S, Saleem A, Yuan Z, Emoto Y, Prasad KV, Kufe D. Stimulation of human monocytes with macrophage colony-stimulating factor induces a Grb2-mediated association of the focal adhesion kinase pp125FAK and dynamin. Proc Natl Acad Sci USA 1995; 92: 6132–6136.

    CAS  PubMed  Google Scholar 

  7. Chen HC, Guan JL. Association of focal adhesion kinase with its potential substrate phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA 1994; 91: 10148–10152.

    CAS  PubMed  Google Scholar 

  8. Xing Z, Chen HC, Nowlen JK, Taylor SJ, Shalloway D, Guan JL. Direct interaction of v-Src with the focal adhesion kinase mediated by the Src SH2 domain. Mol Biol Cell 1994; 5: 413–421.

    CAS  PubMed  Google Scholar 

  9. Chen HC, Appeddu PA, Parsons JT, Hildebrand JD, Schaller MD, Guan JL. Interaction of focal adhesion kinase with cytoskeletal protein talin. J Biol Chem 1995; 270: 16995–16999.

    Article  CAS  PubMed  Google Scholar 

  10. Cary LA, Chang JF, Guan JL. Stimulation of cell migration by overexpression of focal adhesion kinase and its association with Src and Fyn. J Cell Sci 1996; 109: 1787–1794.

    CAS  PubMed  Google Scholar 

  11. Harte MT, Hildebrand JD, Burnham MR, Bouton AH, Parsons JT. p130Cas, a substrate associated with v-Src and v-Crk, localizes to focal adhesions and binds to focal adhesion kinase. J Biol Chem 1996; 271: 13649–13655.

    Article  CAS  PubMed  Google Scholar 

  12. Hildebrand JD, Schaller MD, Parsons JT. Paxillin, a tyrosine phosphorylated focal adhesion-associated protein binds to the carboxyl terminal domain of focal adhesion kinase. Mol Biol Cell 1995; 6: 637–647.

    CAS  PubMed  Google Scholar 

  13. Chan PY, Kanner SB, Whitney G, Aruffo A. A transmembrane-anchored chimeric focal adhesion kinase is constitutively activated and phosphorylated at tyrosine residues identical to pp125FAK. J Biol Chem 1994; 269: 20567–20574.

    CAS  PubMed  Google Scholar 

  14. Hungerford JE, Compton MT, Matter ML, Hoffstrom BG, Otey CA. Inhibition of pp125FAK in cultured fibroblasts results in apoptosis. J Cell Biol 1996; 135: 1383–1390.

    Article  CAS  PubMed  Google Scholar 

  15. Xu LH, Owens LV, X. Sturge GC, et al. Attenuation of the expression of the focal adhesion kinase induces apoptosis in tumor cells. Cell Growth Differ 1996; 7: 413–418.

    CAS  PubMed  Google Scholar 

  16. Chan PC, Lai JF, Cheng CH, Tang MJ, Chiu CC, Chen HC. Suppression of ultraviolet irradiation-induced apoptosis by overexpression of focal adhesion kinase in Madin-Darby canine kidney cells. J Biol Chem 1999; 272: 26901–26906.

    Article  Google Scholar 

  17. Levkau B, Herren B, Koyama H, Ross R, Raines EW. Caspase-mediated cleavage of focal adhesion kinase pp125FAK and disassembly of focal adhesions in human endothelial cell apoptosis. J Exp Med 1998; 187: 579–586.

    Article  CAS  PubMed  Google Scholar 

  18. Wen LP, Fahrni JA, Troie S, Guan JL, Orth K, Rosen GD. Cleavage of focal adhesion kinase by caspases during apoptosis. J Biol Chem 1997; 272: 26056–26061.

    Article  CAS  PubMed  Google Scholar 

  19. Crouch DH, Fincham VJ, Frame MC. Targeted proteolysis of the focal adhesion kinase pp125 FAK during c-MYC-induced apoptosis is suppressed by integrin signalling. Oncogene 1996; 12: 2689–2696.

    CAS  PubMed  Google Scholar 

  20. Gervais FG, Thornberry NA, Ruffolo SC, Nicholson DW, Roy S. Caspases cleave focal adhesion kinase during apoptosis to generate a FRNK-like polypeptide. J Biol Chem 1998; 273: 17102–17108.

    Article  CAS  PubMed  Google Scholar 

  21. Cho KA, Ryu SJ, Park JS, Jang IS, et al. Senescent phenotype can be reversed by reduction of caveolin status. J Biol Chem 2003; 278: 27789–27795.

    Article  CAS  PubMed  Google Scholar 

  22. Cho KA, Ryu SJ, Oh YS, et al. Morphological adjustment of senescent cells by modulating caveolin-1 status. J Biol Chem 2004; 279: 42270–42278.

    Article  CAS  PubMed  Google Scholar 

  23. Abulrob A, Giuseppin S, Andrade MF, McDermid A, Moreno M, Stanimirovic D. Interactions of EGFR and caveolin-1 in human glioblastoma cells: evidence that tyrosine phosphorylation regulates EGFR association with caveolae. Oncogene 2004; 23: 6967–6979.

    Article  CAS  PubMed  Google Scholar 

  24. Cao H, Sanguinetti AR, Mastick CC. Oxidative stress activates both Src-kinases and their negative regulator Csk and induces phosphorylation of two targeting proteins for Csk: caveolin-1 and paxillin. Exp Cell Res 2004; 294: 159–171.

    Article  CAS  PubMed  Google Scholar 

  25. Lin D, Zhou J, Zelenka PS, Takemoto DJ. Protein kinase Cgamma regulation of gap junction activity through caveolin-1-containing lipid rafts. Invest Ophthalmol Vis Sci 2003; 4: 5259–5268.

    Article  Google Scholar 

  26. Jayachandran M, Miller VM. Human platelets contain estrogen receptor alpha, caveolin-1 and estrogen receptor associated proteins. Platelets 2003; 14: 75–81.

    Article  CAS  PubMed  Google Scholar 

  27. Razani B, Lisanti MP. Two distinct caveolin-1 domains mediate the functional interaction of caveolin-1 with protein kinase A. Am J Physiol Cell Physiol 2001; 281: C1241–1250.

    CAS  PubMed  Google Scholar 

  28. Park WY, Park JS, Cho KA, et al. Up-regulation of caveolin attenuates epidermal growth factor signaling in senescent cells. J Biol Chem 2000; 275: 20847–20852.

    Article  CAS  PubMed  Google Scholar 

  29. Bucci M, Gratton JP, Rudic RD, et al. In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat Med 2000; 6: 1362–1367.

    Article  CAS  PubMed  Google Scholar 

  30. Engelman JA, Lee RJ, Karnezis A, et al. Reciprocal regulation of neu tyrosine kinase activity and caveolin-1 protein expression in vitro and in vivo. Implications for human breast cancer. J Biol Chem 1998; 273: 20448–20455.

    Article  CAS  PubMed  Google Scholar 

  31. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494–498.

    Article  CAS  PubMed  Google Scholar 

  32. Naderi J, Hung M, Pandey S. Oxidative stress-induced apoptosis in dividing fibroblasts involves activation of p38 MAP kinase and over-expression of Bax: resistance of quiescent cells to oxidative stress. Apoptosis 2003; 8: 91–100.

    Article  CAS  PubMed  Google Scholar 

  33. Wu SS, Yamauchi K, Rozengurt E. Bombesin and angiotensin II rapidly stimulate Src phosphorylation at Tyr-418 in fibroblasts and intestinal epithelial cells through a PP2-insensitive pathway. Cell Signal 2005; 17: 93–102.

    Article  CAS  PubMed  Google Scholar 

  34. DePinho RA. The age of cancer. Nature 2000; 408: 248–254.

    Article  CAS  PubMed  Google Scholar 

  35. Suh Y, Lee KA, Kim WH, Han BG, Vijg J, Park SC. Aging alters the apoptotic response to genotoxic stress. Nat Med 2002; 8: 3–4.

    Article  CAS  PubMed  Google Scholar 

  36. Gabarra NV, Schaller MD, Dunty JM. FAK regulates biological processes important for the pathogenesis of cancer. Cancer Metastasis Rev 2003; 22: 359–374.

    Article  Google Scholar 

  37. Agochiya M, Brunton VG, Owens DW, et al. Increased dosage and amplification of the focal adhesion kinase gene in human cancer cells. Oncogene 1999; 18: 5646–5653.

    Article  CAS  PubMed  Google Scholar 

  38. Wozniak MA, Modzelewska K, Kwong L, Keely PJ. Focal adhesion regulation of cell behavior. Biochem Biophys Acta 2004; 1692: 103–119.

    CAS  PubMed  Google Scholar 

  39. Calalb MB, Polte TR, Hanks SK. Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: A role for Src family kinases. Mol Cell Biol 1995; 15: 954–963.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Park.

Additional information

Both authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryu, S.J., Cho, K.A., Oh, Y.S. et al. Role of Src-specific phosphorylation site on focal adhesion kinase for senescence-associated apoptosis resistance. Apoptosis 11, 303–313 (2006). https://doi.org/10.1007/s10495-006-3978-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-3978-9

Keywords

Navigation