Skip to main content
Log in

Epigallocatechin gallate induced apoptosis in Sarcoma180 cells in vivo: Mediated by p53 pathway and inhibition in U1B, U4-U6 UsnRNAs expression

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The aim of this study was to understand the mode of action of tea polyphenol epigallocatechin gallate (EGCG) in vivo. Swiss albino mice were treated i.p. with EGCG at two different doses i.e. 12-mg/kg body weight and 15-mg/kg body weight, for 7 days prior to inoculation of Sarcoma180 (S180) cells and continued for another 7 days. The growth of the S180, harvested 7 days after inoculation, was significantly reduced due to treatment with EGCG. The flowcytometric analysis of S180 cells, showed significant increase in apoptosis and reduction in the number of cells in G2/M phase of cell cycle due to treatment with EGCG. The induction of apoptosis has also been confirmed by the TUNEL and DNA fragmentation assays. Both RT-PCR and Western blot analysis showed significant up-regulation of p53 and bax, and down-regulation of bcl-2 and c-myc due to EGCG treatment. No changes in the expression pattern of p21, p27, bcl-xl, mdm2 and cyclin D1 were seen. Interestingly, there was significant down-regulation of spliceosomal uridylic acid rich small nuclear RNAs (UsnRNAs) U1B and U4-U6 due to EGCG treatment. This indicates that these UsnRNAs may be involved in the apoptosis process. Taken together, our study suggests that in vivo EGCG could induce apoptosis in S180 cells through alteration in G2/M phase of the cell cycle by up-regulation of p53, bax and down-regulation of c-myc, bcl-2 and U1B, U4-U6 UsnRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang CS, Maliakal P, Meng X (2002) Inhibition of carcinogenesis by tea. Annu Rev Pharmacol Toxicol 42:25−4

    Article  PubMed  CAS  Google Scholar 

  2. Weisburger JH (1999) Tea and health: the underlying mechanisms. Proc Soc Exp Biol Med 220:271−75

    Article  PubMed  CAS  Google Scholar 

  3. Adhami VM, Afaq Farrukh, Ahamad N, Hara Y, Mukhtar H (2004) Tea polyphenols as cancer chemopreventive agents. In: Kelloff GJ, Hawk ET, Sigman CC (eds), Cancer chemoprevention, promising cancer chemoprevention agents. Humana Press Inc., Totowa, NJ, vol 1, pp 437−49

    Google Scholar 

  4. Lin JK, Liang YC (2000) Cancer chemoprevention by tea polyphenols. Proc Natl Sci Counc 24(1):1−3

    Google Scholar 

  5. Qanungo S, Das M, Haldar S, Basu A (2005) Epigallocatechin-3-gallate induces mitochondrial membrane depolarization and caspase-dependent apoptosis in pancreatic cancer cells. Carcinogenesis 26(5):958−67

    Article  PubMed  CAS  Google Scholar 

  6. Ahmad N, Feyes DK, Nieminen AL, Agarwal R, Mukhtar H (1997) Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma. J Natl Cancer Inst 89(24):1881−886

    Article  PubMed  CAS  Google Scholar 

  7. Chen C, Shen G, Hebbar V, Hu R, Owuor ED, Kong A-NT (2003) Epigallocatechin -3-gallate-induced stress signals in HT-29 human colon adenocarcinoma cells. Carcinogenesis 24(8):1369−378

    Article  PubMed  CAS  Google Scholar 

  8. Jia X, Han C, Chen J (2002) Effects of tea on preneoplastic lesions and cell cycle regulators in rat liver. Cancer Epidemiol Biomarkers Prevention 11:1663−667

    CAS  Google Scholar 

  9. Gupta S, Hastak K, Ahamad N, Lewin JS, Mukhtar H (2001) The inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. Proc Nat Acad Sci 98(18):10350−0355

    Article  PubMed  CAS  Google Scholar 

  10. Bhattacharyya A, Choudhury T, Pal S et al (2003) Apoptogenic effects of black tea on Ehrlich’s ascites carcinoma cell. Carcinogenesis 24(1):75−0

    Article  PubMed  CAS  Google Scholar 

  11. Bode AM, Dong Z (2003) Signal transduction pathways: targets for green and black tea polyphenols. J Biochem Mol Biol 36(1):66−7

    CAS  Google Scholar 

  12. Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nature Reviews Cancer 3:768−80

    Article  PubMed  CAS  Google Scholar 

  13. Kuo PL, Lin CC (2003) Green tea constituent (−)-epigallocatechin-3-gallate inhibits Hep G2 cell proliferation and induces apoptosis through p53 dependent and Fas-mediated pathways. J Biomed Sci 10:291−97

    Google Scholar 

  14. Ju J, Hong J, Zhou JN et al (2005) Inhibition of intestinal tumorigenesis in Apcmin/+mice by (−)-epigallocatechin-3-gallate, the major catechin in green tea. Cancer Res 65(22):10623−0631

    Article  PubMed  CAS  Google Scholar 

  15. Ran ZH, Jou J, Xiao SD (2005) Experimental study on anti-neoplastic activity of epigallocatechin-3-gallate to digestive tract carcinomas. Chin Med J Engl 118(16):1330−337

    PubMed  CAS  Google Scholar 

  16. Levites Y, Amit T, Youdim MB, Mandel S (2002) Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol (−)-epigallocatechin 3-gallate neuroprotective action. J Biol Chem 277(34):30574−0580

    Article  PubMed  CAS  Google Scholar 

  17. Huh SW, Bae SM, Kim YW et al (2004) Anticancer effects of (−)-epigallocatechin-3-gallate on ovarian carcinoma cell lines. Gyneocol Oncol 94(3):760−68

    Article  CAS  Google Scholar 

  18. Gupta S, Hussain T, Mukhtar H (2003) Molecular pathway for (−)-epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells. Arch Biochem Biophys 410(1):177−85

    Article  PubMed  CAS  Google Scholar 

  19. Bartek J, Lukas J (2001) Mammalian G1- and S-phase checkpoints in response to DNA damage. Current opinion Cell Biol 13:738−47

    Article  PubMed  CAS  Google Scholar 

  20. Yee KS, Vousden KH (2005) Complicating the complexity of p53. Carcinogenesis 26(8):1317−322

    Article  PubMed  CAS  Google Scholar 

  21. Lowe SW, Lin AW (2000) Apoptosis in cancer. Carcinogenesis 21(3):485−95

    Article  PubMed  CAS  Google Scholar 

  22. Taylor WR, Stark GR (2001) Regulation of the G2/M transition by p53. Oncogene 20:1803−815

    Article  PubMed  CAS  Google Scholar 

  23. Gridasova AA, Henry RW (2005) The p53 tumor suppressor protein represses human snRNA gene transcription by RNA polymerase II and III independently of sequence-specific DNA binding. Mol cell Biol 25(8):3247−260

    Article  PubMed  CAS  Google Scholar 

  24. Crains CA, White RJ (1998) p53 is a general repressor of RNA polymerase III transcription. EMBO J 17:3112−123

    Article  Google Scholar 

  25. Chesnokov I, Chu WM, Botchan MR, Schmid CW (1996) p53 inhibits RNA polymerase III-directed transcription in a promoter-dependent manner. Mol Cell Biol 16:7084−088

    PubMed  CAS  Google Scholar 

  26. Manna S, Banerjee S, Saha P, Roy A, Das S, Panda CK (2006) Differential alterations in metabolic pattern of the spliceosomal UsnRNAs during pre-malignant lung lesions induced by benzo(a)pyrene: modulation by tea polyphenols. Mol Cell Biochem (in press)

  27. Ray R, Ray K, Panda CK (1997) Differential alterations in metabolic pattern of the six major UsnRNAs during development. Mol Cell Biochem 177:79−8

    Article  PubMed  CAS  Google Scholar 

  28. Lund E, Kahan B, Dahlberg JE (1985) Differential control of U1 small nuclear RNA expression during mouse development. Science 229(4719):1271−274

    Article  PubMed  CAS  Google Scholar 

  29. Lund E, Dahlberg JE (1987) Differential accumulation of U1 and U4 small nuclear RNAs during Xenopus development. Genes Dev 1(1):39−6

    Article  PubMed  CAS  Google Scholar 

  30. Hanley BA, Schuler MA (1991) Developmental expression of plant snRNAs. Nucl Acids Res 19(22):6319−325

    Article  PubMed  CAS  Google Scholar 

  31. Forbes DJ, Kirschner MW, Caput D, Dahlberg JE, Laund E (1984) Differential expression of multiple U1 small nuclear RNAs in oocytes and embryos of Xenopus laevis. Cell 38(3):681−89

    Article  PubMed  CAS  Google Scholar 

  32. Dahlberg JE, Lund E (1987) Structure and expression of U-snRNA genes. Mol Biol Rep 12(3):139−43

    Article  PubMed  CAS  Google Scholar 

  33. Reddy R, Henning D, Busch H (1979) Nucleotide sequence of nuclear U3B RNA. J Biol Chem 254(21):11097−1105

    PubMed  CAS  Google Scholar 

  34. Degen WGJ, Aarssen YV, Pruijn GJM, Utz PJ, Venrooij WJV (2000) The fate of U1 snRNP during anti-Fas induced apoptosis: Specific cleavage of the U1 snRNA molecule. Cell Death Differentiation 7:70−9

    Article  CAS  Google Scholar 

  35. Siddiqi M, Das S (1999) Tea as anticarcinogenic agent. In: Jain NK (ed), Global Advances in Tea Science. Aravali Books International, New Delhi, pp 359−68

    Google Scholar 

  36. Banerjee S, Manna S, Saha P, Panda CK, Das S (2005) Black tea polyphenols suppress cell proliferation and induce apoptosis during benzo(a)pyrene-induced lung carcinogenesis. Eur J Cancer Prev 14(3):215−21

    Article  PubMed  CAS  Google Scholar 

  37. Ganguly C, Saha P, Panda CK, Das S (2005) Inhibition of growth, induction of apoptosis and alteration of gene expression by tea polyphenols in the highly metastatic human lung cancer cell line NCI-H460. Asian Pac J Cancer Prev 6(3):326−31

    PubMed  Google Scholar 

  38. Saha P, Banerjee S, Ganguly C, Manna S, Panda CK, Das S (2005) Black tea extract can modulate protein expression of H-ras, c-Myc, p53, and Bcl-2 genes during pulmonary hyperplasia, dysplasia, and carcinoma in situ. J Envir Pathol Toxicol Oncol 24(3):211−24

    Article  Google Scholar 

  39. Holmes KL, Otten G, Yokoyama WM (2001) Flow cytometry analysis using the Becton Dickinson FACS Calibur. In: Coligan JE, Bierrer BE, Margulies DH, Shevach EM, Strober W (eds) Current protocols in immunology. John Wiley & Sons Inc., USA, vol 1, pp 5.4.1−.4.22

    Google Scholar 

  40. Yoshida A, Shao R, Pommier Y (1999) Assessment of DNA damage in apoptosis. In: Studzinski GP (ed) Apoptosis: a practical approach. Oxford University Press, New York, pp 41−5

    Google Scholar 

  41. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  42. Hernandez I, Maddison LA, Wei Y, et al. (2003) Prostate-specific expression of p53R172L differentially regulates p21, Bax, and mdm2 to inhibit prostate cancer progression and prolong survival. Mol Cancer Res 1:1036−047

    PubMed  CAS  Google Scholar 

  43. Tsuruyama T, Nakamura T, Jin G, Ozeki M, Yamada Y, Hiai H (2002) Constitutive activation of Stat5a by retrovirus integration in early pre-B lymphomas of SL/Kh strain mice. Proc Nat Acad Sci 99(12):8253−258

    Article  PubMed  CAS  Google Scholar 

  44. Pereira MA, Kramer PM, Conran PB, Tao L (2001) Effect of chloroform on dichloroacetic acid and trichloroacetic acid-induced hypomethylation and expression of the c-myc gene and on their promotion of liver and kidney tumors in mice. Carcinogenesis 22(9):1511−519

    Article  PubMed  CAS  Google Scholar 

  45. Wu C, Fujihara H, Yao J et al (2003) Different expression patterns of Bcl-2, Bcl-xl and Bax proteins after sublethal forebrain ischemia in C57black/Crj6 mouse Striatum. Stroke 34:1803−808

    Article  PubMed  CAS  Google Scholar 

  46. Wang X, Michael D, Murcia GD, Oren M (2002) P53 activation by nitric oxide involves down-regulation of mdm2. J Biol Chem 277(18):15697−5702

    Article  PubMed  CAS  Google Scholar 

  47. Castro IPD, Malumbres M, Santos J, Pellicer A, Piqueras JF (1999) Cooperative alterations of Rb pathway regulators in mouse primary T cell lymphomas. Carcinogenesis 20(9):1675−682

    Article  Google Scholar 

  48. Pereira MA, Li Y, Gunning WT et al (2002) Prevention of mouse lung tumors by budesonide and its modulation of biomarkers. Carcinogenesis 23(7):1185−192

    Article  PubMed  CAS  Google Scholar 

  49. Herold C, Ocker M, Ganslmayer M, Gerauer H, Hahn EG, Schuppan D (2002) Ciprofloxacin induces apoptosis and inhibits proliferation of human colorectal carcinoma cells. British J Cancer 86:443−48

    Article  CAS  Google Scholar 

  50. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature Lond 227:680−85

    Article  PubMed  CAS  Google Scholar 

  51. Choudhury K, Choudhury I, Jones RW, Thirunavukkarasu C, Eliceiri GL (1988) Metabolism of U6 RNA species in nonirradiated and UV-irradiated mammalian cells. J Cell Physiol 137(3):529−36

    Article  PubMed  CAS  Google Scholar 

  52. Sherr CJ (1996) Cancer cell cycles. Science 274:1672−677

    Article  PubMed  CAS  Google Scholar 

  53. Pelengaris S, Khan M, Evan G (2002) C-Myc: more than just a matter of life and death. Nature Reviews Cancer 2:764−76

    Article  PubMed  CAS  Google Scholar 

  54. Vargas DA, Ronai Z (2002) P53-Mdm2-the affair that never ends. Carcinogenesis 23(4):541−47

    Article  Google Scholar 

  55. Fujiki H, Suganuma M, Okabe S et al (1998) Cancer inhibition by green tea. Mutant Res 402(1−):307−10

    CAS  Google Scholar 

  56. Okabe S, Suganuma M, Hayashi M, Sueoka E, Komori A, Fujiki H (1997) Mechanisms of growth inhibition of human lung cancer cell line, PC-9, by tea polyphenols. Jpn J Cancer Res 88(7):639−43

    PubMed  CAS  Google Scholar 

  57. Ahmad N, Cheng P, Mukhtar H (2000) Cell cycle dysregulation by green tea polyphenol epigallocatechin-3-gallate. Biochem Biophys Res Commun 275(2):328−34

    Article  PubMed  CAS  Google Scholar 

  58. Boxer LM, Dang CV (2001) Translocations involving c-myc and c-myc function. Oncogene 20:5595−610

    Article  PubMed  CAS  Google Scholar 

  59. Masuda M, Suzui M, Weinstein IB (2001) Effects of epigallocatechin-3-gallate on growth, epidermal growth factor receptor signaling pathways, gene expression, and chemosensitivity in human head and neck squamous cell carcinoma cell lines. Clinical Cancer Res 7:4220−229

    CAS  Google Scholar 

  60. Hamad K, Kumazaki T, Mizuno K, Yokoro K (1989) A small nuclear RNA U5, can transform cells in vitro. Mol Cell Biol 9(10):4345−356

    Google Scholar 

  61. Eliceiri BP, Choudhury K, Scott QO, Eliceiri GL (1989) Ultraviolate light-induced inhibition of small nuclear RNA synthesis. J Cell Physiol 138(3):586−92

    Article  PubMed  CAS  Google Scholar 

  62. Thirunavukkarasu C, Choudhury K, Ninichuck AJ, Choudhury I, Eliceiri G (1988) Effect of ultraviolate light on the expression of genes for human U1 RNA. J Cell Physiol 137(1):55−4

    Article  PubMed  CAS  Google Scholar 

  63. Morra DS, Eliceiri BP, Eliceiri GL (1986) Effect of UV light on small nuclear RNA synthesis: increased inhibition during postirradiation cell incubation. Mol Cell Biol 6(3):745−50

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinmay Kr. Panda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manna, S., Banerjee, S., Mukherjee, S. et al. Epigallocatechin gallate induced apoptosis in Sarcoma180 cells in vivo: Mediated by p53 pathway and inhibition in U1B, U4-U6 UsnRNAs expression. Apoptosis 11, 2267–2276 (2006). https://doi.org/10.1007/s10495-006-0198-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0198-2

Keywords

Navigation