Skip to main content
Log in

Upstream control of apoptosis by caspase-2 in serum-deprived primary neurons

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

During development as well as in pathological situations, neurons that fail to find appropriate targets or neurotrophic factors undergo cell death. Using primary cortical neurons subjected to acute serum-deprivation (SD), we have examined caspases activation, mitochondrial dysfunction and cell death parameters. Among a panel of metabolic, signaling and caspases inhibitors only those able to interfere with caspase-2 like activity protect primary neurons against SD-induced cell death. In situ detection and subcellular fractionation demonstrate a very early activation of cytosolic caspase-2, which controls Bax cleavage, relocalization and mitochondrial membrane permeabilization (MMP). Both z-VDVAD-fmk and a siRNA specific for caspase-2 abolish Bax changes, mitochondrial membranes permeabilization, as well as cytochrome c release-dependent activation of caspase-9/caspase-3, nuclear alterations, phosphatidylserine exposure, neurites dismantling and neuronal death. Hence, caspase-2 is an early checkpoint for apoptosis initiation in primary neurons subjected to serum deprivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

7-AAD:

7-Amino Actinomycin D

ALLM:

N- Acetyl-Leu-Leu-Met-al

ALLN:

N-Acetyl-Leu-Leu-Norleu-al

BAPTA-AM:

acetoxymethyl ester of 1, 2-bis(2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid

BOC-D-FMK:

BOC-Asp (OMe)-fluoromethylketone

mClCCP:

carbonylcyanide m- chlorophenylhydrazone

CMXRos:

Mito

Tracker® Red CMXRos

ΔΨ m :

mitochondrial transmembrane potential

DIDS:

4,4′-Diisothiocyanastilbene-2,2′-disulfonic acid disodium salt

E64d:

trans-Epoxysuccinyl-L-leucylamido-(4- guanidine)butane

FLICA:

Fluorochrome-Labeled Inhibitor of Caspase; FC: flow cytometry

FM:

fluorescence micro- scopy

JC-1:

5,5′,6,6′-tetrachloro-1,1′, 3,3′-tetraethyl- benzimidazolylcarbocyanine iodide

MMP:

mitochondrial membrane permeabilization

MPTP:

1-methyl-4-phenyl-1,2, 3,6-tetrahydropyridine

NA:

nuclear apoptosis

Pefabloc SC®:

4-(2-Aminoethyl)-benzenesulfonyl fluoride

SD:

serum deprivation

PS:

phosphatidyl-serine

PTP:

permeability transition pore

Q-VD-OPH:

Quinoline-Val-Asp (OMe)-CH2-O-Ph, Q-VD-OPH; Z-DEVD-FMK; N-benzyloxycarbonyl-Asp-Glu(Ome)-His-Asp(Ome)-fluoromethylketone

Z-FA-FMK;:

N-ben- zyloxycarbonyl-Phe-Ala-fluoromethylketone

z-FF-fmk:

N- benzyloxycarbonyl-Phe-Phe-fluoromethylketone

Z-LEHD-:

FMK: N-ben-zyloxycarbonyl-Leu-Glu(Ome)-His-Asp(OMe)-fluoromethylketone

Z-LETD-FMK:

N-benzyloxycarbonyl-Leu-Glu(Ome)-Thr-Asp(OMe)-fluoromethylketone

Z-VAD-FMK:

N-benzyloxycarbonyl-Val-Ala-Asp(Ome)-fluoromethylketone

Z-VDVAD-FMK:

N-benzyloxycarbonyl-Val-Asp(Ome)-Val-Ala-Asp(OMe)-fluoromethylketone

VDAC:

voltage-dependent-anionic-channel

References

  1. Lipton P. Ischemic cell death in brain neurons. Physiol Rev 1999; 79: 1431–1568.

    CAS  PubMed  Google Scholar 

  2. Yuan J, Yankner B. Apoptosis in the nervous system. Nature 2000; 407: 802–809.

    Article  CAS  PubMed  Google Scholar 

  3. Mattson MP. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 2000; 1: 120–129.

    Article  CAS  PubMed  Google Scholar 

  4. Nicholls DG, Budd SL. Mitochondria and neuronal survival. Physiol Rev 2000; 80: 315–360.

    CAS  PubMed  Google Scholar 

  5. Yuan J, Lipinski M, Degterev A. Diversity in the mechanisms of neuronal cell death. Neuron 2003; 40: 401–413.

    Article  CAS  PubMed  Google Scholar 

  6. Rideout HJ, Stefanis L. Caspase inhibition: A potential therapeutic strategy in neurological diseases. Histol Histopathol 2001; 16: 895–908.

    CAS  PubMed  Google Scholar 

  7. Nicotera P. Apoptosis and age-related disorders: Role of caspase-dependent and caspase-independent pathways. Toxicol Letters 2002; 127: 189–195.

    Article  CAS  Google Scholar 

  8. Orrenius S, Zhivotovsky B, Nicotera P. Calcium: Regulation of cell death: the calcium–apoptosis link. Nat Rev Mol Cell Biol 2003; 4: 552–565.

    Article  CAS  PubMed  Google Scholar 

  9. McLaughlin B, Hartnett KA, Erhardt JA, et al. Caspase 3 activation is essential for neuroprotection in preconditioning. Proc Natl Acad Sci USA 2003; 100: 715–720.

    Article  CAS  PubMed  Google Scholar 

  10. Hartmann A, Hunot S, Michel PP, et al. Caspase-3: A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson's disease. Proc Natl Acad Sci USA 2000; 97: 2875–2880.

    CAS  PubMed  Google Scholar 

  11. Mogi M, Togari A, Kondo T, et al. Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from parkinsonian brain. J Neural Transm 2000; 107: 335–341.

    Article  CAS  PubMed  Google Scholar 

  12. Gastard MC, Troncoso JC, Koliatsos VE. Caspase activation in the limbic cortex of subjects with early Alzheimer's disease. Ann Neurol 2003; 54, 393–398.

    Article  CAS  PubMed  Google Scholar 

  13. Chan SL, Mattson ML. Caspase and calpain substrates: roles in synaptic plasticity and cell death. J Neurosci Res 1999; 58: 167–190.

    CAS  PubMed  Google Scholar 

  14. Deshmukh M, Vasilakos J, Deckwerth TL, et al. Genetic and metabolic status of NGF-deprived sympathetic neurons saved by an inhibitor of ICE family proteases. J Cell Biol 1996; 135: 1341–1354.

    Article  CAS  PubMed  Google Scholar 

  15. Lassus P, Opitz-Araya X, Lazebnik Y. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 2002; 297: 1352–1354.

    Article  CAS  PubMed  Google Scholar 

  16. Robertson JD, Enoksson M, Suomela M, et al. Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. J Biol Chem 2002; 277: 29803–29809.

    Article  CAS  PubMed  Google Scholar 

  17. Robertson JD, Gogvadze V, Kropotov A, et al. Processed caspase-2 can induce mitochondria-mediated apoptosis independently of its enzymatic activity. EMBO Rep 2004; 5: 643–648.

    Article  CAS  PubMed  Google Scholar 

  18. Troy CM, Shelanski ML. Caspase-2 redux. Cell Death Differ 2003; 10: 101–107.

    Article  CAS  PubMed  Google Scholar 

  19. Troy CM, Stefanis L, Greene LA, et al. Nedd2 is required for apoptosis after trophic factor withdrawal, but not superoxide dismutase (SOD1) downregulation in sympathetic neurons and PC12 cells. J Neurosci 1997; 17: 1911–1918.

    CAS  PubMed  Google Scholar 

  20. Troy CM, Rabacchi SA, Friedman WJ, et al. Caspase-2 mediates neuronal cell death induced by beta-amyloid. J Neurosci 2000; 20: 1386–1392.

    CAS  PubMed  Google Scholar 

  21. Haviv R, Lindenboim L, Yuan J, Stein R. Need for caspase-2 in apoptosis of growth-factor-deprived PC12 cells. J Neurosci Res 1998; 52: 491–497.

    CAS  PubMed  Google Scholar 

  22. Stefanis L, Troy CM, Qi H, et al. Inhibitors of trypsin-like serine proteases inhibit processing of the caspase Nedd-2 and protect PC12 cells and sympathetic neurons from death evoked by withdrawal of trophic support. J Neurochem 1997; 69: 1425–1437.

    CAS  PubMed  Google Scholar 

  23. Stefanis L, Troy CM, Qi H, et al. Caspase-2 (Nedd-2) processing and death of trophic factor-deprived PC12 cells and sympathetic neurons occur independently of caspase-3 (CPP32)-like activity. J Neurosci 1998; 18: 9204–9215.

    CAS  PubMed  Google Scholar 

  24. Troy CM, Rabacchi SA, Xu Z, et al. Beta-Amyloid-induced neuronal apoptosis requires c-Jun N-terminal kinase activation. J Neurochem 2001; 77: 157–164.

    CAS  PubMed  Google Scholar 

  25. Bergeron L, Perez GI, Macdonald G, et al. Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev 1998; 12: 1304–1314.

    CAS  PubMed  Google Scholar 

  26. Hermel E, Gafni J, Propp SS, et al. Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease. Cell Death Differ 2004; 11: 424–438.

    Article  CAS  PubMed  Google Scholar 

  27. Li H, Bergeron L, Cryns V, et al. Activation of caspase-2 in apoptosis. J Biol Chem 1997; 272: 21010–21017.

    CAS  PubMed  Google Scholar 

  28. Lecoeur H, Chauvier D, Langonné A, et al. Fixed- and real-time cytofluorometric technologies for dynamic analysis of apoptosis in primary cortical neurons. Apoptosis 2004; 9: 157–169.

    Article  CAS  PubMed  Google Scholar 

  29. Susin SA, Lorenzo H, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397: 441–446.

    CAS  PubMed  Google Scholar 

  30. Poser S, Impey S, Xia Z, et al. Brain-derived neurotrophic factor protection of cortical neurons from serum withdrawal-induced apoptosis is inhibited by cAMP. J Neurosci 2003; 23: 4420–4427.

    CAS  PubMed  Google Scholar 

  31. Caserta TM, Smith AN, Gultice AD, et al. Q-VD-OPh, a broad spectrum caspase inhibitor with potent antiapoptotic properties. Apoptosis 2003; 8: 345–352.

    Article  CAS  PubMed  Google Scholar 

  32. Stefanis L, Park DS, Yan CY, et al. Induction of CPP32-like activity in PC12 cells by withdrawal of trophic support. Dissociation from apoptosis. J Biol Chem 1996; 271: 30663–30671.

    Article  CAS  PubMed  Google Scholar 

  33. Deshmukh M, Kuida K, Johnson EM Jr. Caspase inhibition extends the commitment to neuronal death beyond cytochrome c release to the point of mitochondrial depolarization. J Cell Biol 2000; 150: 131–143.

    Article  CAS  PubMed  Google Scholar 

  34. Deckwerth TL, Elliott JL, Knudson CM, et al. BAX is required for neuronal death after trophic factor deprivation and during development. Neuron 1996; 17: 401–411.

    Article  CAS  PubMed  Google Scholar 

  35. Deshmukh M, Johnson EM. Evidence of a novel event during neuronal death: development of competence-to-die in response to cytoplasmic cytochrome c. Neuron 1998; 21: 695–705.

    Article  CAS  PubMed  Google Scholar 

  36. Putcha GV, Deshmukh M, Johnson EM. BAX translocation is a critical event in neuronal apoptosis: regulation by neuroprotectants, BCL-2, and caspases. J Neurosci 1999; 19: 7476–7485.

    CAS  PubMed  Google Scholar 

  37. Karpinich NO, Tafani M, Rothman RJ. The course of etoposide-induced apoptosis from damage to DNA and p53 activation to mitochondrial release of cytochrome c. J Biol Chem 2002; 277: 16547–1652.

    Article  CAS  PubMed  Google Scholar 

  38. Tafani M, Cohn JA, Karpinich NO, et al. Regulation of intracellular pH mediates Bax activation in HeLa cells treated with staurosporine or tumor necrosis factor-alpha. J Biol Chem 2002; 277: 49569–49576.

    CAS  PubMed  Google Scholar 

  39. Guo Y, Srinivasula SM, Druilhe A, et al. Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J Biol Chem 2002; 277: 13430–13437.

    CAS  PubMed  Google Scholar 

  40. Wood DE, Thomas A, Devi LA, et al. Bax cleavage is mediated by calpain during drug-induced apoptosis. Oncogene 1998; 17: 1069–1078.

    Article  CAS  PubMed  Google Scholar 

  41. Choi WS, Lee EH, Chung CW, et al. Cleavage of Bax is mediated by caspase-dependent or -independent calpain activation in dopaminergic neuronal cells: protective role of Bcl-2. J Neurochem 2001; 77: 1531–1541.

    Article  CAS  PubMed  Google Scholar 

  42. Marsden VS, Ekert PG, Van Delft M, et al. Bcl-2-regulated apoptosis and cytochrome c release can occur independently of both caspase-2 and caspase-9. J Cell Biol 2004, 165; 775–780.

    Article  CAS  PubMed  Google Scholar 

  43. Troy CM, Rabacchi SA, Hohl JB, et al. Death in the balance: alternative participation of the caspase-2 and -9 pathways in neuronal death induced by nerve growth factor deprivation. J Neurosci 2001; 21: 5007–5016.

    CAS  PubMed  Google Scholar 

  44. Henshall DC, Skradski SL, Bonislawski DP, et al. Caspase-2 activation is redundant during seizure-induced neuronal death. J Neurochem 2001; 77: 886–895.

    Article  CAS  PubMed  Google Scholar 

  45. Ekert PG., Read SH, Silke J, et al. Apaf-1 and caspase-9 accelerate apoptosis, but do not determine whether factor-deprived or drug-treated cells die. J Cell Biol 2004; 165, 835–842.

    Article  CAS  PubMed  Google Scholar 

  46. Qin Y, Van den Hoek TL, Wojcik K, et al. Caspase-dependent cytochrome c release and cell death in chick cardiomyocytes following simulated ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2004; 286: H2280–2286.

    Article  CAS  PubMed  Google Scholar 

  47. Wang L, Miura M, Bergeron L, et al. Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell 1994; 78, 739–750.

    Article  CAS  PubMed  Google Scholar 

  48. Adrain C, Creagh EM, Martin SJ. Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO J 2001; 20: 6627–6636.

    Article  CAS  PubMed  Google Scholar 

  49. Paroni G, Henderson C, Schneider C. Caspase-2-induced apoptosis is dependent on caspase-9, but its processing during UV- or tumor necrosis factor-dependent cell death requires caspase-3. J Biol Chem 2001; 276: 21907–21915.

    Article  CAS  PubMed  Google Scholar 

  50. Prokop A, Wrasidlo W, Lode H, et al. Induction of apoptosis by enediyne antibiotic calicheamicin thetaII proceeds through a caspase-mediated mitochondrial amplification loop in an entirely Bax-dependent manner. Oncogene 2003; 22: 9107–9120.

    Article  CAS  PubMed  Google Scholar 

  51. Paroni G, Henderson C, Schneider C, et al. Caspase-2 can trigger cytochrome c release and apoptosis from the nucleus. J Biol Chem 2002; 277: 15147–15161.

    Article  CAS  PubMed  Google Scholar 

  52. Colussi PA, Harvey NL, Kumar S. Prodomain-dependent nuclear localization of the caspase-2 (Nedd2) precursor. A novel function for a caspase prodomain. J Biol Chem 1998; 273: 24535–24542.

    CAS  PubMed  Google Scholar 

  53. Susin SA, Lorenzo H, Zamzami N, et al. Mitochondrial release of caspase-2 and -9 during the apoptotic process. J Exp Med 1999; 189: 381–394.

    Article  CAS  PubMed  Google Scholar 

  54. O'Reilly LA, Ekert P, Harvey N, et al. Caspase-2 is not required for thymocyte or neuronal apoptosis even though cleavage of caspase-2 is dependent on both Apaf-1 and caspase-9. Cell Death Differ 2002; 9: 832–841.

    Article  PubMed  Google Scholar 

  55. Mancini M, Machamer CE, Roy S, et al. Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. J Cell Biol 2000; 149: 603–612.

    Article  CAS  PubMed  Google Scholar 

  56. Ohtsuka T, Ryu H, Minamishima YA, et al. ASC is a Bax adaptor and regulates the p53-Bax mitochondrial apoptosis pathway. Nat Cell Biol 2004; 6: 121–128.

    Article  CAS  PubMed  Google Scholar 

  57. Baliga BC, Colussi PA, Read SH, et al. Role of prodomain in importin-mediated nuclear localization and activation of caspase-2. J Biol Chem 2003; 278: 4899–4905.

    Article  CAS  PubMed  Google Scholar 

  58. Wood DE, Newcomb EW. Cleavage of Bax enhances its cell death function. Exp Cell Res 2000; 256: 375–382.

    Article  CAS  PubMed  Google Scholar 

  59. Cao X, Deng X, May WS. Cleavage of Bax to p18 Bax accelerates stress-induced apoptosis, and a cathepsin-like protease may rapidly degrade p18 Bax. Blood 2003; 102: 2605–2614.

    Article  CAS  PubMed  Google Scholar 

  60. Sawada M, Hayes P, Matsuyama S. Cytoprotective membrane-permeable peptides designed from the Bax-binding domain of Ku70. Nat Cell Biol 2003; 5: 352–357.

    CAS  PubMed  Google Scholar 

  61. Guo B, Zhai D, Cabezas E, et al. Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature 2003; 423: 456–461.

    Article  CAS  PubMed  Google Scholar 

  62. Ohtsuka T, Ryu H, Minamishima YA, et al. ASC is a Bax adaptor and regulates the p53-Bax mitochondrial apoptosis pathway. Nat Cell Biol 2004; 6, 121–128.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Chauvier.

Additional information

D. Rebouillat and E. Jacotot share senior co-authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chauvier, D., Lecoeur, H., Langonné, A. et al. Upstream control of apoptosis by caspase-2 in serum-deprived primary neurons. Apoptosis 10, 1243–1259 (2005). https://doi.org/10.1007/s10495-005-1681-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-005-1681-x

Keywords

Navigation