Skip to main content
Log in

Structure-based design of an agonistic peptide targeting Fas

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

A small agonistic peptide FRAP-4 (WEWT, Fas reactive peptide-4) that binds to the human Fas molecule was discovered using our computer screening strategy named the Amino acid Complement Wave (ACW) method, which is based on the complementarities of interacting amino acids between comprehensive testing peptides and a target protein surface pocket. In silico docking studies demonstrated the specific interaction of FRAP-4 with the main Fas ligand (FasL) binding domain in the Fas molecule. An octamer of this peptide produced by carboxyl terminal linkages of polylysine branches (MAP), (FRAP-4)8-MAP, effectively induced apoptosis in human ovarian cancer cell line NOS4 cells that was associated with the activation of caspases-8, -9 and -3, and the cleavage of PARP. Alanine substitution of the N-terminal W in FRAP-4 resulted in complete loss of FasL-mimetic action of (FRAP-4)8-MAP, suggesting that the aromatic functionality at the N-terminal position W appears to play an essentially important role in Fas binding ability. These observations indicate that the FasL-mimetic peptide should serve as an excellent starting point for the design of effective compounds with FasL-mimetic activity. Furthermore, the ACW method for the structure-based design of optimized small peptides against receptor molecules such as Fas could open new avenues for the development of peptide mimetic and nonpeptidic organic forms to generate novel effective pharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACW:

amino acid complement wave

BPB:

bromophenol blue

BSA:

bovine serum albumin

CAD:

caspase-activated DNase

3D:

three-dimensional

DTT:

dithiotheritol

FRAP:

Fas reactive peptide

IAP:

inhibitor of apoptosis protein

PI:

propidum iodide

mAb:

monoclonal antibody

pAb:

polyclonal antibody

PVDF:

poly(vinylidene fluoride)

RBD:

receptor-binding domain

SBDD:

structure-based drug design

SDS:

sodium dodecyl sulfate

PAGE:

polyacrylamide gel electrophoresis

TNFR:

tumor necrosis factor receptor

TRAILR:

TNF-related apoptosis-inducing ligand receptor.

References

  1. Ellis RE, Yuan JY, Horvitz HR. Mechanisms and functions of cell death. Annu Rev Cell Biol 1991; 7: 663–698.

    Article  CAS  PubMed  Google Scholar 

  2. Tanuma S. Molecular mechanics of apoptosis. In: Sluyser M, ed. Apoptosis in Normal Development and Cancer. London, UK: Taylor & Francis 1996: 39–59.

    Google Scholar 

  3. Nicholson DW, Thornberry NA. Caspases: Killer proteases. Trends Biochem Sci 1997; 22: 299–306.

    CAS  PubMed  Google Scholar 

  4. Utz PJ, Anderson P. Life and death decisions: regulation of apoptosis by proteolysis of signaling molecules. Cell Death Differ 2000; 7: 589–602.

    CAS  PubMed  Google Scholar 

  5. Wyllie AH, Kerr JF, Currie AR. Cell death: The significance of apoptosis. Int Rev Cytol 1980; 68: 251–306.

    Article  CAS  PubMed  Google Scholar 

  6. Nagata S, Golstein P. The Fas death factor. Science 1995; 267: 1449–1456.

    CAS  PubMed  Google Scholar 

  7. Ashkenazi A, Dixit VM. Death receptors: Signaling and modulation. Science 1998; 281: 1305–1308.

    CAS  PubMed  Google Scholar 

  8. Walczak H, Krammer PH. The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res 2000; 256: 58–66.

    CAS  PubMed  Google Scholar 

  9. Scaffidi C, Fulda S, Srinivasan A, et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J 1998; 17: 1675–1687.

    CAS  PubMed  Google Scholar 

  10. Kroemer G., Reed JC. Mitochondrial control of cell death. Nature Med. 2000; 6: 513–519.

    CAS  PubMed  Google Scholar 

  11. Cohen GM. Caspases: The executioners of apoptosis. Biochem J 1997; 326: 1–16.

    CAS  PubMed  Google Scholar 

  12. Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: Structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 1999; 68: 383–424.

    PubMed  CAS  Google Scholar 

  13. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 1998; 391: 43–50.

    CAS  PubMed  Google Scholar 

  14. Shiokawa D, Tanuma S. Molecular cloning and expression of a cDNA encoding an apoptotic endonuclease DNase gamma. Biochem J 1998; 332: 713–720.

    CAS  PubMed  Google Scholar 

  15. Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 2001; 412: 95–99.

    CAS  PubMed  Google Scholar 

  16. Adams JM, Cory S. The Bcl-2 protein family: Arbiters of cell survival. Science 1998; 281: 1322–1326.

    CAS  PubMed  Google Scholar 

  17. Chao DT, Korsmeyer SJ. BCL-2 family: Regulators of cell death. Annu Rev Immunol 1998; 16: 395–419.

    CAS  PubMed  Google Scholar 

  18. Yonehara S, Ishii A, Yonehara M. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J. Exp. Med. 1989; 169: 1747–1756.

    CAS  PubMed  Google Scholar 

  19. Trauth BC, Klas C, Peters AM, et al. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 1989, 245, 301–305.

    CAS  PubMed  Google Scholar 

  20. Sharma K, Wang RX, Zhang LY, et al. Death the Fas way: regulation and pathophysiology of CD95 and its ligand. Pharmacol Ther 2000; 88: 333–347.

    CAS  PubMed  Google Scholar 

  21. Sakamaki K, Yoshida H, Nishimura Y, Nishikawa S, Manabe N, Yonehara S. Involvement of Fas antigen in ovarian follicular atresia and luteolysis. Mol Reprod Dev 1997, 47, 11–18.

    CAS  PubMed  Google Scholar 

  22. Starling GC, Bajorath, J, Emswiler J, Ledbetter JA, Aruffo A, Kiener PA. Identification of amino acid residues important for ligand binding to Fas. J Exp Med 1997; 185: 1487–1492.

    CAS  PubMed  Google Scholar 

  23. Starling GC, Kiener PA, Aruffo A, Bajorath J. Analysis of the ligand binding site in Fas (CD95) by site-directed mutagenesis and comparison with TNFR and CD40. Biochemistry 1998; 37: 3723–3726.

    CAS  PubMed  Google Scholar 

  24. Yoshimori A, Takasawa R, Tanuma S. A novel method for evaluation and screening of caspase inhibitory peptides by the amino acid positional fitness score. BMC Pharmacol 2004; 4: 7.

    PubMed  Google Scholar 

  25. Wrighton NC, Farrell FX, Chang R, et al. Small peptides as potent mimetics of the protein hormone erythropoietin. Science 1996; 273: 458–464.

    CAS  PubMed  Google Scholar 

  26. Livnah O, Stura EA, Johnson DL. Functional mimicry of a protein hormone by a peptide agonist: the EPO receptor complex at 2.8 A. Science 1996; 273: 464–471.

    CAS  PubMed  Google Scholar 

  27. Cwirla SE, Balasubramanian P, Duffin DJ, et al. Peptide agonist of the thrombopoietin receptor as potent as the natural cytokine. Science 1997, 276, 1696–1699.

    CAS  PubMed  Google Scholar 

  28. Elton TS, Dion LD, Bost KL, Oparil S, Blalock JE. Purification of an angiotensin II binding protein by using antibodies to a peptide encoded by angiotensin II complementary RNA. Proc Natl Acad Sci USA 1988; 85: 2518–2522.

    CAS  PubMed  Google Scholar 

  29. Fassina G, Cassani G, Corti A. Binding of human tumor necrosis factor alpha to multimeric complementary peptides. Arch Biochem Biophys 1992; 296: 137–143.

    CAS  PubMed  Google Scholar 

  30. Hayakawa A, Kojima T, Yokoyama I, Suzuki H, Tajiri H, Nakashima I. A short peptide derived from the antisense homology box of Fas ligand induces apoptosis in anti-Fas antibody-insensitive human ovarian cancer cells. Apoptosis 2000; 5: 37–41.

    CAS  PubMed  Google Scholar 

  31. Hayakawa A, Yokoyama I, Tajiri H, Okamoto T, Nakashima I. Protein kinase C-dependent anti-apoptotic mechanism that is associated with high sensitivity to anti-Fas antibody in ovarian cancer cell lines. Cancer Lett 1999; 140: 113–119.

    CAS  PubMed  Google Scholar 

  32. Hayakawa A, Wu J, Kawamoto Y, et al. Activation of caspase-8 is critical for sensitivity to cytotoxic anti-Fas antibody-induced apoptosis in human ovarian cancer cells. Apoptosis 2002; 7: 107–113.

    CAS  PubMed  Google Scholar 

  33. Gallet X, Charloteaux B, Thomas A, Brasseur R. A fast method to predict protein interaction sites from sequences. J Mol Biol 2000; 302: 917–926.

    CAS  PubMed  Google Scholar 

  34. Eisenberg D, Schwarz E, Komaromy M, Wall R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 1984; 179: 125–142.

    CAS  PubMed  Google Scholar 

  35. Morris GM, Goodsell DS, Halliday RS, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 1998; 19: 1639–1662.

    Article  CAS  Google Scholar 

  36. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998; 94: 481–490

    CAS  PubMed  Google Scholar 

  37. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998; 94: 491–501.

    CAS  PubMed  Google Scholar 

  38. Jiang Y, Woronicz JD, Liu W, Goeddel DV. Prevention of constitutive TNF receptor 1 signaling by silencer of death domains. Science 1999; 283: 543–546.

    CAS  PubMed  Google Scholar 

  39. Kischkel FC, Hellbardt S, Behrmann I, et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 1995; 14: 5579–5588.

    CAS  PubMed  Google Scholar 

  40. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876–4882.

    Article  CAS  PubMed  Google Scholar 

  41. Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993; 234: 779–815.

    Article  CAS  PubMed  Google Scholar 

  42. Marti-Renom MA, Stuart A, Fiser A, Sánchez R, Melo F, Sali A. Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 2000; 29: 291–325.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Tanuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshimori, A., Takasawa, R., Hayakawa, A. et al. Structure-based design of an agonistic peptide targeting Fas. Apoptosis 10, 323–329 (2005). https://doi.org/10.1007/s10495-005-0806-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-005-0806-6

Keywords

Navigation