Skip to main content
Log in

A Systematic Adaptive Mesh Refinement Method for Large Eddy Simulation of Turbulent Flame Propagation

  • Research
  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This paper presents a feature-based adaptive mesh refinement (AMR) method for Large Eddy Simulation of propagating deflagrations, using massive-scale parallel unstructured AMR libraries. The proposed method, named turbulent flame propagation-AMR (TFP-AMR), is able to track the transient dynamics of both the turbulent flame and the vortical structures in the flow. To handle the interaction of the turbulent flame brush with the vortical structures of the flow, a vortex selection criterion is derived from flame/vortex interaction theory. The method is built with the general intent to prioritise conservatively estimated parameters, rather than to rely on user-dependent parameters. In particular, a specific mesh adaptation triggering strategy is constructed, adapted to the strongly transient physics found in deflagrations, to guarantee that the physics of interest consistently reside within a region of high accuracy throughout the transient process. The methodology is applied and validated on several elementary cases representing fundamental bricks of the full problem: (1) a laminar flame propagation, (2) the advection of a pair of non-reacting vortices, (3) a flame/vortex interaction. The method is then applied to three different configurations of a three-dimensional complex explosion scenario in an obstructed chamber. All cases demonstrate the TFP-AMR capability to recover accurate results at reduced computational cost without requiring any ad hoc tuning of the AMR method or its parameters, thus demonstrating its genericity and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Abdel-Raheem, M.A., Ibrahim, S.S., Malalasekera, W., Masri, A.R.: Large eddy simulation of hydrogen-air premixed flames in a small scale combustion chamber. Int. J. Hydrog. Energy 40, 3098–3109 (2015). https://doi.org/10.1016/j.ijhydene.2014.12.042

    Article  Google Scholar 

  • Alauzet, F., George, P.L., Mohammadi, B., Frey, P., Borouchaki, H.: Transient fixed point-based unstructured mesh adaptation. Int. J. Numer. Methods Fluids 43, 729–745 (2003). https://doi.org/10.1002/fld.548

    Article  MathSciNet  Google Scholar 

  • Alauzet, F., Frey, P.J., George, P.L., Mohammadi, B.: 3D transient fixed point mesh adaptation for time-dependent problems: application to CFD simulations. J. Comput. Phys. 222, 592–623 (2007). https://doi.org/10.1016/j.jcp.2006.08.012

    Article  MathSciNet  Google Scholar 

  • Antepara, O., Lehmkuhl, O., Borrell, R., Chiva, J., Oliva, A.: Parallel adaptive mesh refinement for large-eddy simulations of turbulent flows. Comput. Fluids 110, 48–61 (2015)

    Article  MathSciNet  Google Scholar 

  • Babuska, I., Miller, A.: A-posteriori error estimates and adaptive techniques for the finite element method. Technical Report, Maryland Univ. College Park Inst. for Physical Science and Technology (1981)

  • Benard, P., Balarac, G., Moureau, V., Dobrzynski, C., Lartigue, G., D’Angelo, Y.: Mesh adaptation for large-eddy simulations in complex geometries. Int. J. Numer. Methods Fluids 81, 719–740 (2016). https://doi.org/10.1002/fld.4204

    Article  MathSciNet  Google Scholar 

  • Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84 (1989). https://doi.org/10.1016/0021-9991(89)90035-1

    Article  Google Scholar 

  • Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984). https://doi.org/10.1016/0021-9991(84)90073-1

    Article  MathSciNet  Google Scholar 

  • Boeck, L., Katzy, P., Hasslberger, J., Kink, A., Sattelmayer, T.: The GraVent DDT database. Shock Waves (2016). https://doi.org/10.1007/s00193-016-0629-0

    Article  Google Scholar 

  • Cant, R.S., Ahmed, U., Fang, J., Chakarborty, N., Nivarti, G., Moulinec, C., Emerson, D.R.: An unstructured adaptive mesh refinement approach for computational fluid dynamics of reacting flows. J. Comput. Phys. 468, 111480 (2022). https://doi.org/10.1016/j.jcp.2022.111480

    Article  MathSciNet  Google Scholar 

  • Ciccarelli, G., Dorofeev, S.: Flame acceleration and transition to detonation in ducts. Prog. Energy Combust. Sci. 34(4), 499–550 (2008). https://doi.org/10.1016/j.pecs.2007.11.002

    Article  Google Scholar 

  • Colin, O., Rudgyard, M.: Development of high-order Taylor-Galerkin schemes for les. J. Comput. Phys. 162, 338–371 (2000). https://doi.org/10.1006/jcph.2000.6538

    Article  MathSciNet  Google Scholar 

  • Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12, 1843–1863 (2000). https://doi.org/10.1063/1.870436

    Article  Google Scholar 

  • Dannenhoffer, J., Baron, J.: Grid adaptation for the 2-d Euler equations. In: 23rd Aerospace Sciences Meeting (1985). https://doi.org/10.2514/6.1985-484

  • Dapogny, C., Dobrzynski, C., Frey, P.: Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems. J. Comput. Phys. 262, 358–378 (2014). https://doi.org/10.1016/j.jcp.2014.01.005

    Article  MathSciNet  Google Scholar 

  • Daviller, G., Brebion, M., Xavier, P., Staffelbach, G., Müller, J.-D., Poinsot, T.: A mesh adaptation strategy to predict pressure losses in les of swirled flows. Flow Turbul. Combust. 99, 93–118 (2017). https://doi.org/10.1007/s10494-017-9808-z

    Article  Google Scholar 

  • Dobrzynski, C., Frey, P.: Anisotropic Delaunay mesh adaptation for unsteady simulations. In: Proceedings of the 17th International Meshing Roundtable, pp. 177–194 (2008)

  • Dong, X., Wang, Y., Chen, X., Dong, Y., Zhang, Y., Liu, C.: Determination of epsilon for omega vortex identification method. J. Hydrodyn. 30, 541–548 (2018). https://doi.org/10.1007/s42241-018-0066-x

    Article  Google Scholar 

  • Dounia, O., Vermorel, O., Misdariis, A., Poinsot, T.: Influence of kinetics on DDT simulations. Combust. Flame 200, 1–14 (2019)

    Article  Google Scholar 

  • Fabius, O., Amersfoort, J.R.: Variational recurrent auto-encoders. arXiv preprint arXiv:1412.6581 (2014)

  • Franzelli, B.G.: Impact of the chemical description on direct numerical simulations and large eddy simulations of turbulent combustion in industrial aero-engines. PhD thesis, INP Toulouse (2011)

  • Gicquel, L.Y.M., Gourdain, N., Boussuge, J.F., Deniau, H., Staffelbach, G., Wolf, P., Poinsot, T.: Calcul parallèle haute performance des écoulements en géométries complexes. Comptes Rendus-Mecanique 339, 104–124 (2011). https://doi.org/10.1016/j.crme.2010.11.006

    Article  Google Scholar 

  • Goodwin, D.G., Moffat, H.K., Speth, R.L.: Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes (2017)

  • Gubba, S.R., Ibrahim, S.S., Malalasekera, W., Masri, A.R.: Measurements and les calculations of turbulent premixed flame propagation past repeated obstacles. Combust. Flame 158, 2465–2481 (2011). https://doi.org/10.1016/j.combustflame.2011.05.008

    Article  Google Scholar 

  • Gülder, O.L., Smallwood, G.J.: Inner cutoff scale of flame surface wrinkling in turbulent premixed flames. Combust. Flame 103, 107–114 (1995). https://doi.org/10.1016/0010-2180(95)00073-F

    Article  Google Scholar 

  • Haldenwang, P., Pignol, D.: Dynamically adapted mesh refinement for combustion front tracking. Comput. Fluids 31, 589–606 (2002). https://doi.org/10.1016/S0045-7930(01)00064-0

    Article  Google Scholar 

  • Hartmann, D., Meinke, M., Schröder, W.: An adaptive multilevel multigrid formulation for cartesian hierarchical grid methods. Comput. Fluids 37, 1103–1125 (2008). https://doi.org/10.1016/j.compfluid.2007.06.007

    Article  MathSciNet  Google Scholar 

  • Hunt, J.C.R., Wray, A.A., Moin, P., Wray, A.A., Moin, P.: Eddies, streams, and convergence zones in turbulent flows. Studying turbulence using numerical simulation databases, 2. In: Proceedings of the 1988 Summer Program (1988)

  • Iapichino, L., Adamek, J., Schmidt, W., Niemeyer, J.C.: Hydrodynamical adaptive mesh refinement simulations of turbulent flows—I. Substructure in a wind. Mon. Not. R. Astron. Soc. 388, 1079–1088 (2008). https://doi.org/10.1111/j.1365-2966.2008.13137.x

    Article  Google Scholar 

  • Jaravel, T., Dounia, O., Malé, Q., Vermorel, O.: Deflagration to detonation transition in fast flames and tracking with chemical explosive mode analysis. Proc. Combust. Inst. 1–8 (2020)

  • Jaravel, T.: Prediction of pollutants in turbines using large eddy simulation. PhD thesis, INP Toulouse (2016)

  • Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995). https://doi.org/10.1017/S0022112095000462

    Article  MathSciNet  Google Scholar 

  • Jouhaud, J.-C., Montagnac, M., Tourrette, L.: A multigrid adaptive mesh refinement strategy for 3D aerodynamic design. Int. J. Numer. Methods Fluids 47, 367–385 (2005). https://doi.org/10.1002/fld.804

    Article  Google Scholar 

  • Kamkar, S., Jameson, A., Wissink, A., Sankaran, V.: Feature-driven adaptive mesh refinement in the Helios code. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (2010). https://doi.org/10.2514/6.2010-171

  • Kent, J.E., Masri, A.R., Starner, S.H., Ibrahim, S.S.: A new chamber to study premixed flame propagation past repeated obstacles. In: 5th Asia-Pacific Conference on Combustion, pp. 17–20 (2005)

  • Khokhlov, A.M., Oran, E.S., Thomas, G.O.: Numerical simulation of deflagration-to-detonation transition: the role of shock-flame interactions in turbulent flames. Combust. Flame 117, 323–339 (1999). https://doi.org/10.1016/S0010-2180(98)00076-5

    Article  Google Scholar 

  • Lapointe, C., Wimer, N.T., Glusman, J.F., Makowiecki, A.S., Daily, J.W., Rieker, G.B., Hamlington, P.E.: Efficient simulation of turbulent diffusion flames in OpenFOAM using adaptive mesh refinement. Fire Saf. J. 111, 102934 (2020). https://doi.org/10.1016/j.firesaf.2019.102934

    Article  Google Scholar 

  • Legier, J.P., Poinsot, T., Veynante, D.: Dynamically thickened flame les model for premixed and non-premixed turbulent combustion. In: Proceedings of the Summer Program, Centre for Turbulence Research, pp. 157–168 (2000)

  • Liu, C., Wang, Y., Yang, Y., Duan, Z.: New omega vortex identification method. Sci. China Phys. Mech. Astron. (2016). https://doi.org/10.1007/s11433-016-0022-6

    Article  Google Scholar 

  • Masri, A.R., Alharbi, A., Meares, S., Ibrahim, S.S.: A comparative study of turbulent premixed flames propagating past repeated obstacles. Ind. Eng. Chem. Res. 51, 7690–7703 (2012). https://doi.org/10.1021/ie201928g

    Article  Google Scholar 

  • Maxwell, B.M.: Turbulent combustion modelling of fast-flames and detonations using compressible LEM-LES. PhD thesis, University of Ottawa (2016)

  • Mehl, C., Liu, S., See, Y.C., Colin, O.: Les of a stratified turbulent burner with a thickened flame model coupled to adaptive mesh refinement and detailed chemistry. In: 2018 Joint Propulsion Conference (2018). https://doi.org/10.2514/6.2018-4563

  • Mehl, C., Liu, S., Colin, O.: A strategy to couple thickened flame model and adaptive mesh refinement for the les of turbulent premixed combustion. Flow Turbul. Combust. 107, 1003–1034 (2021). https://doi.org/10.1007/s10494-021-00261-2

    Article  Google Scholar 

  • Mohanamuraly, P., Staffelbach, G.: Hardware locality-aware partitioning and dynamic load-balancing of unstructured meshes for large-scale scientific applications. In: Proceedings of the Platform for Advanced Scientific Computing Conference, pp. 1–10 (2020). https://doi.org/10.1145/3394277.3401851

  • Moureau, V.: Large-eddy simulation of piston-engine flows. PhD thesis, Ecole Centrale de Paris (2004)

  • Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62, 183–200 (1999). https://doi.org/10.1023/A:1009995426001

    Article  Google Scholar 

  • Pang, C., Yang, H., Gao, Z., Chen, S.: Enhanced adaptive mesh refinement method using advanced vortex identification sensors in wake flow. Aerosp. Sci. Technol. 115, 106796 (2021). https://doi.org/10.1016/j.ast.2021.106796

    Article  Google Scholar 

  • Poinsot, T., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992). https://doi.org/10.1016/0021-9991(92)90046-2

    Article  MathSciNet  Google Scholar 

  • Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 3rd edn., p. 603. RT Edwards Inc., Dallas (2011)

    Google Scholar 

  • Poinsot, T., Veynante, D., Candel, S.: Quenching processes and premixed turbulent combustion diagrams. J. Fluid Mech. 228, 561–606 (1991). https://doi.org/10.1017/S0022112091002823

    Article  Google Scholar 

  • Quillatre, P., Vermorel, O., Poinsot, T.: Large eddy simulation of turbulent premixed flames propagation in a small scale venting chamber: influence of chemistry and transport modelling. In: 7th Mediterranean Combustion Symposium (2011)

  • Quillatre, P., Vermorel, O., Poinsot, T., Ricoux, P.: Large eddy simulation of vented deflagration. Ind. Eng. Chem. Res. 52, 11414–11423 (2013). https://doi.org/10.1021/ie303452p

    Article  Google Scholar 

  • Rios, G., Nigro, N., Storti, M.: An h-adaptive unstructured mesh refinement strategy for unsteady problems. Lat. Am. Appl. Res. 39, 137–143 (2009)

    Google Scholar 

  • Roberts, W.L., Driscoll, J.F., Drake, M.C., Goss, L.P.: Images of the quenching of a flame by a vortex–to quantify regimes of turbulent combustion. Combust. Flame 94, 58–69 (1993). https://doi.org/10.1016/0010-2180(93)90019-Y

    Article  Google Scholar 

  • San Diego, U.: Chemical-kinetic mechanisms for combustion applications (2016)

  • Sengupta, S.: Advanced methods for meshes in high performance computing of explosion simulations. PhD thesis, INP Toulouse (2023)

  • Spiegel, S.C., Huynh, H.T., Debonis, J.R.: A survey of the isentropic Euler vortex problem using high-order methods. In: 22nd AIAA Computational Fluid Dynamics Conference, pp. 1–21 (2015). https://doi.org/10.2514/6.2015-2444

  • Toosi, S., Larsson, J.: Towards systematic grid selection in les: identifying the optimal spatial resolution by minimizing the solution sensitivity. Comput. Fluids 201, 104488 (2020)

    Article  MathSciNet  Google Scholar 

  • Vanbersel, B., Meziat Ramirez, F.A., Vermorel, O., Jaravel, T., Douasbin, Q., Dounia, O.: Large eddy simulations of a hydrogen-air explosion in an obstructed chamber using adaptive mesh refinement. In: 10th International Conference on Hydrogen Safety (2023) (in press)

  • Verhaeghe, A., Pappa, A., Paepe, W.D., Benard, P., Bricteux, L.: Large eddy simulation of turbulent combustion using adaptive mesh refinement in a typical micro gasturbine combustor. Société Française de Thermique (2022). https://doi.org/10.25855/SFT2022-070

    Article  Google Scholar 

  • Vermorel, O., Quillatre, P., Poinsot, T.: Les of explosions in venting chamber: a for premixed turbulent combustion models. Combust. Flame 183, 207–223 (2017). https://doi.org/10.1016/j.combustflame.2017.05.014

    Article  Google Scholar 

  • Volpiani, P.S., Schmitt, T., Vermorel, O., Quillatre, P., Veynante, D.: Large eddy simulation of explosion deflagrating flames using a dynamic wrinkling formulation. Combust. Flame 186, 17–31 (2017). https://doi.org/10.1016/j.combustflame.2017.07.022

    Article  Google Scholar 

  • Wilkening, H., Huld, T.: An adaptive 3-D CFD solver for modeling explosions on large industrial environmental scales. Combust. Sci. Technol. 149, 361–387 (1999). https://doi.org/10.1080/00102209908952112

    Article  Google Scholar 

  • Xiao, H., Oran, E.S.: Flame acceleration and deflagration-to-detonation transition in hydrogen-air mixture in a channel with an array of obstacles of different shapes. Combust. Flame 220, 378–393 (2020). https://doi.org/10.1016/j.combustflame.2020.07.013

    Article  Google Scholar 

  • Zeoli, S., Balarac, G., Benard, P., Georis, G., Houtin-Mongrolle, F., Bricteux, L.: Large eddy simulation of wind turbine wakes using adaptative mesh refinement. In: Journal of Physics: Conference Series, vol. 1618, p. 62056 (2020). https://doi.org/10.1088/1742-6596/1618/6/062056

Download references

Acknowledgements

The authors thank TotalEnergies, GRTgaz and Air Liquide for their financial support in the framework of the LEFEX project and ANRT for the funding through CIFRE-2021-1379. This work was performed using HPC resources from GENCI-IDRIS (Grant 2023-A0132B10157). The authors thank INRIA (MMG3D) for providing their developments, as well as V. Moureau and A. Misdariis for their assistance.

Funding

This work received financial support from TotalEnergies, GRTgaz, and Air Liquide as part of the LEFEX project, and from ANRT through funding under CIFRE-2021-1379.

Author information

Authors and Affiliations

Authors

Contributions

BV, FM, TJ, OD, QD, and OV developed the methods and performed the simulations. GS and PM developed the AMR library and wrote the corresponding section. BV and FM wrote the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Benjamin Vanbersel.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 330 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanbersel, B., Meziat Ramirez, F.A., Mohanamuraly, P. et al. A Systematic Adaptive Mesh Refinement Method for Large Eddy Simulation of Turbulent Flame Propagation. Flow Turbulence Combust 112, 1127–1160 (2024). https://doi.org/10.1007/s10494-024-00534-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-024-00534-6

Keywords

Navigation