Skip to main content
Log in

Large Eddy Simulations for the Ahmed Car at 25° Slant Angle at Different Reynolds Numbers

  • Research
  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The article investigates the feasibility of Large Eddy Simulation methods to accurately compute the flow around the Ahmed car body at \(25^\circ\) slant angle. The flow is computed at two different Reynolds numbers and with different turbulence modeling concepts using a large variety of grids. Issues associated with the accurate computation of the separation at the slant onset will be discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Ahmed, S.R., Ramm, G., Faltin, G.: Some salient features of the time-averaged ground vehicle wake. In: SAE International Congress and Exposition (1984)

  • Aljure, D.E., Lehmkuhl, O., Rodríguez, I., Oliva, A.: Flow and turbulent structures around simplified car models. Comput. Fluids 96, 122–135 (2014)

    Article  Google Scholar 

  • Aljure, D.E., Calafell, J., Baez, A., Oliva, A.: Flow over a realistic car model: wall modeled large eddy simulations assessment and unsteady effects. J. Wind Eng. Ind. Aerodyn. 174, 225–240 (2018)

    Article  Google Scholar 

  • Barth, T.J., Jesperson, D.C.: The design and application of upwind schemes on unstructured meshes. In: AIAA Paper 89-0366 (1989)

  • Colombo, A., Bortoli, A., Conti, P., Crivellini, A., Ghidoni, A., Nigro, A., Noventa, G.: Assessment of a discontinuous Galerkin method for the simulation of the turbulent flow around the DrivAer car model. Appl. Sci. 11, 10202 (2021)

    Article  Google Scholar 

  • Conan, B., Anthoine, J., Planquart, P.: Experimental aerodynamic study of a car-type bluff body. Exp Fluids. 50, 1273–1284 (2011)

    Article  Google Scholar 

  • Delassaux, F., Mortazavi, I., Itam, E., Herbert, V., Ribes, C.: Sensitivity analysis of hybrid methods for the flow around the Ahmed body with application to passive control with rounded edges. Comput Fluids 214, 104757 (2021)

    Article  MathSciNet  Google Scholar 

  • Ekman, P., Venning, J., Virdung, T., Karlsson, M.: Importance of sub-grid scale modeling for accurate aerodynamic simulations. J. Fluids Eng. 143, 011501 (2021)

    Article  Google Scholar 

  • Fares, E.: Unsteady flow simulation of the Ahmed reference body using a lattice Boltzmann approach. Comput. Fluids 35, 940–950 (2006)

    Article  Google Scholar 

  • Filip, G., Maki, K.: Evaluation of advanced turbulence models for high-reynolds number external flow, Technical Report Number 354, Department of Naval Architecture & Marine Engineering (2015)

  • Fluent Manual A.F.U. R-22.1 (2022)

  • Guilmineau, E., Deng, G.B., Leroyer, A., Queutey, P., Visonneau, M., Wackers, J.: Assessment of hybrid RANS-LES formulations for flow simulation around the Ahmed body. Comput. Fluids 176, 302–319 (2018)

    Article  MathSciNet  Google Scholar 

  • Heft, A., Indinger, T., Adams, N.: Introduction of a new realistic generic car model for aerodynamic investigations. In: SAE 2012 World Congress & Exhibition (2012)

  • Hinterberger, C., García-Villalba, M., Rodi, W.: Large eddy simulation of flow around the Ahmed body. In: McCallen, R., Browand, F., Ross, J. (eds.) The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains, pp. 77–87. Springer, Berlin (2004)

    Chapter  Google Scholar 

  • Jang, Y.-J., Leschziner, M.A.: An investigation of higher-order closures in the computation of the flow around a generic car body. In: ECCOMAS Conference. Jyvaskyla (2004)

  • Kapadia, S., Roy, S., Vallero, M., Wurtzler, K., Forsythe, J.: Detached eddy simulation over a reference car model. In: AIAA 2003-857. Reno (2003)

  • Kiris, C.C., Ghate, A.S., Duensing, J.C., Browne, O.M., Housman, J.A., Stich, G.-D., Kenway, G., Fernandes, L.S., Machado, L.M.: High-lift common research model: RANS, HRLES, and WMLES perspectives for CLmax prediction using LAVA. In: AIAA SCITECH 2022 Forum. American Institute of Aeronautics and Astronautics (2022)

  • Krajnović, S., Davidson, L.: Flow around a simplified car, part 1: large eddy simulation. J. Fluids Eng. 127, 907–918 (2005a)

    Article  Google Scholar 

  • Krajnović, S., Davidson, L.: Flow around a simplified car, part 2: understanding the flow. J. Fluids Eng. 127, 919–928 (2005b)

    Article  Google Scholar 

  • Larsson, J., Kawai, S., Bodart, J., Bermejo-Moreno, I.: Large eddy simulation with modeled wall-stress: recent progress and future directions. Mech. Eng. Rev. 3, 1500418 (2016)

    Article  Google Scholar 

  • Lienhart, H., Stoots, C., Becker, S.: Flow and turbulence structures in the wake of a simplified car model (Ahmed Modell). In: Wagner, S., Rist, U., Heinemann, H.-J., Hilbig, R. (eds.) New Results in Numerical and Experimental Fluid Mechanics III, pp. 323–330. Springer, Berlin (2002)

    Chapter  Google Scholar 

  • Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)

    Article  Google Scholar 

  • Menter, F.R.: Stress-blended eddy simulation (SBES)—a new paradigm in hybrid RANS-LES modeling. In: Progress in Hybrid RANS-LES Modelling. Springer, Cham (2016)

  • Menter, F.R., Egorov, Y.: The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: theory and model description. Flow Turbul. Combust. 85, 113–138 (2010)

    Article  Google Scholar 

  • Menter, F.R., Kuntz, M.: Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles. In: McCallen, R., Browand, F., Ross, J. (eds.) The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains, pp. 339–352. Springer, Berlin (2004)

    Chapter  Google Scholar 

  • Menter, F.R., Matyushenko, A., Lechner, R.: Development of a generalized K-ω two-equation turbulence model. In: Dillmann, A., Heller, G., Krämer, E., Wagner, C., Tropea, C., and Jakirlić, S. (eds.) New Results in Numerical and Experimental Fluid Mechanics XII, pp. 101–109. Springer (2020)

  • Menter, F.R., Matyushenko, A., Lechner, R., Stabnikov, A., Garbaruk, A.: An algebraic LCTM model for laminar-turbulent transition prediction. Flow Turbul. Combust. 109, 841–869 (2022)

    Article  Google Scholar 

  • Menter, F.R., Kolmogorov, D.K., Garbaruk, A.V., Stabnikov, A.S.: Direct- and large eddy simulations of turbulent flow in CS0 diffuser on resolved and under-resolved meshes. Flow Turbulence Combust. 110, 515–546 (2023)

    Article  Google Scholar 

  • Minguez, M., Pasquetti, R., Serre, E.: High-order large-eddy simulation of flow over the “Ahmed body” car model. Phys. Fluids 20, 095101 (2008)

    Article  Google Scholar 

  • Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62, 183–200 (1999)

    Article  Google Scholar 

  • Rhie, C.M., Chow, W.L.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21, 1525–1532 (1983)

    Article  Google Scholar 

  • Serre, E., Minguez, M., Pasquetti, R., Guilmineau, E., Deng, G.B., Kornhaas, M., Schäfer, M., Fröhlich, J., Hinterberger, C., Rodi, W.: On simulating the turbulent flow around the Ahmed body: a French–German collaborative evaluation of LES and DES. Comput. Fluids 78, 10–23 (2013)

    Article  MathSciNet  Google Scholar 

  • Shur, M.L., Spalart, P.R., Strelets, MKh., Travin, A.K.: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 29, 1638–1649 (2008)

    Article  Google Scholar 

  • Siddiqui, N.A., Agelin-Chaab, M.: Investigation of the wake flow around the elliptical Ahmed body using detached Eddy simulation. Int J Heat Fluid Flow. 101, 109125 (2023)

    Article  Google Scholar 

  • Simmonds, N., Pitman, J., Tsoutsanis, P., Jenkins, K., Gaylard, A., Jansen, W.: Complete body aerodynamic study of three vehicles. In: Presented at the WCXTM 17: SAE World Congress Experience (2017)

  • Spalart, P.R.: Strategies for turbulence modelling and simulations. Int. J. Heat Fluid Flow 21, 252–263 (2000)

    Article  Google Scholar 

  • Spohn, A., Gillieron, P.: Flow separations generated by a simplified geometry of an automotive vehicle. In: IUTAM Symposium: Unsteady Separated Flows (2002)

  • Thacker, A., Aubrun, S., Leroy, A., Devinant, P.: Effects of suppressing the 3D separation on the rear slant on the flow structures around an Ahmed body. J. Wind Eng. Ind. Aerodyn. 107–108, 237–243 (2012)

    Article  Google Scholar 

  • Tunay, T., Sahin, B., Ozbolat, V.: Effects of rear slant angles on the flow characteristics of Ahmed body. Exp. Therm. Fluid Sci. 57, 165–176 (2014)

    Article  Google Scholar 

  • Van Doormaal, J.P., Raithby, G.D.: Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numer. Heat Transf. 7, 147–163 (1984)

    Google Scholar 

  • Venning, J., Lo Jacono, D., Burton, D., Thompson, M.C., Sheridan, J.: The nature of the vortical structures in the near wake of the Ahmed body. Proc. Inst. Mech. Eng., Part D: J. Automob. Eng. 231, 1239–1244 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Most of the computations CPU were conducted with the use of the cluster Tornado of the Computer Center “Polytechnichesky”.

Funding

Russian authors’ research was funded by the Ministry of Science and Higher Education of the Russian Federation as part of World-class Research Center program: Advanced Digital Technologies (contract No. 075-15-2022-311 of Apr. 20, 2022).

Author information

Authors and Affiliations

Authors

Contributions

FRM and AG managed the technical direction of the project. FRM wrote the main body of the article. DF provided improved numerical settings. AH generated the Octree meshes. AM and AS carried out the simulations and provided the post-processing.

Corresponding author

Correspondence to Florian R. Menter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menter, F.R., Hüppe, A., Flad, D. et al. Large Eddy Simulations for the Ahmed Car at 25° Slant Angle at Different Reynolds Numbers. Flow Turbulence Combust 112, 321–343 (2024). https://doi.org/10.1007/s10494-023-00472-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-023-00472-9

Keywords

Navigation