Skip to main content
Log in

Schlieren Image Velocimetry of Swirl Sprays

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Schlieren image velocimetry (SIV) is based on light deflection through flow heterogeneities and image cross-correlations. This is a low-cost and relatively low complexity technique that allows measurement of the droplet velocity field in a large region of a spray. A Z-type Toepler schlieren system with a high-speed camera was used to determine mean vertical and horizontal droplet velocities, as well as the cone angles of sprays produced by a pressure swirl injector with characteristic geometric constant K = 2. Different LEDs and digital filters were evaluated for edge detection and improvement of image contrast. Open software was adopted for digital image processing and velocimetry. Interrogation windows and overlaps of different sizes were tested to obtain an appropriate correlation for determination of the velocity field. The digital images were obtained with 5 × 103 fps and a resolution of 2.77 pixels/mm. Since the swirl sprays analysed presented instabilities, a number of 100 cross-correlations of images was required to reduce mean velocity fluctuations. Injection pressures varied from 0.05 to 7 bar and mass flow rates varied from 1.389 to 13.89 g/s, using water as test fluid. The wideband warm white LED with Laplacian or high-pass filters provided velocity data for a larger range of injection pressures. Mean axial velocities varied from 3.3 to 11.3 m/s, approximately, with mean horizontal velocities varying from around 0.17 to 3.3 m/s for pressures from 0.05 to 3.22 bar. The velocity data were compared to microscopic shadowgraphy results, showing a good agreement. Spray cone angles ranged from about 32.5o to 69.5°, for injection pressures from 0.05 to 7 bar, and results of triangulation with a blue LED were closer to semi-empirical data.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

Download references

Acknowledgements

The authors thank Prof. Alex Liberzon from Tel-Aviv University for his support in using OpenPIV.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES).

Author information

Authors and Affiliations

Authors

Contributions

DAM developed the SIV system, carried out the tests, and wrote the manuscript. FSC coordinated experimental tests, and theoretical support for the spray study and wrote the manuscript. JCA assisted in test bench assembling and spray testing. GSD assisted spray testing. GAAF performed the design of experiments. All the authors reviewed the manuscript.

Corresponding author

Correspondence to Danilo Almeida Machado.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, D.A., de Souza Costa, F., de Andrade, J.C. et al. Schlieren Image Velocimetry of Swirl Sprays. Flow Turbulence Combust 110, 489–513 (2023). https://doi.org/10.1007/s10494-022-00385-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-022-00385-z

Keywords

Navigation