Skip to main content
Log in

Drag Reduction Effect of Streamwise Traveling Wave-Like Wall Deformation with Spanwise Displacement Variation in Turbulent Channel Flow

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Direct numerical simulation of a fully developed turbulent channel flow controlled using a streamwise traveling wave having a periodicity not only in the streamwise direction but also in the spanwise direction, referred to as wave-machine-like traveling wave, is performed to investigate the impact of the spanwise variation of the streamwise traveling wave on the drag reduction effect. The maximum drag reduction rate attained in the present study is smaller than that in the case of the spanwise-uniform traveling wave. The drag reduction rate increases as the spanwise wavelength increases, and the drag reduction effect can be obtained in the range of \(\lambda _z^+ > 400\). According to the analysis of the phased-averaged Reynolds shear stress (RSS), the wave-machine-like traveling wave makes the flow field more uniform in the streamwise direction and non-uniform in the spanwise direction, as compared to the case of spanwise-uniform traveling wave. While the turbulent component of RSS in the antinode plane is suppressed near the wall, that in the node plane is significantly suppressed far from the wall. An analysis using the Fukagata–Iwamoto–Kasagi identity shows that the drag reduction effect, which was primary due to the significant decrease in the contribution from the turbulent component of the RSS in the case of spanwise-uniform traveling wave, is partly deteriorated by the contribution from the periodic (i.e., dispersive) component of RSS in the case of wave-machine-like traveling wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Albers, M., Meysonnat, P.S., Fernex, D., Semaan, R., Noack, B.R., Schröder, W.: Drag reduction and energy saving by spanwise traveling transversal surface waves for flat plate flow. Flow Turbul. Combust. 105, 125–157 (2020)

    Article  Google Scholar 

  • Bewley, T.R.: A fundamental limit on the balance of power in a transpiration-controlled channel flow. J. Fluid Mech. 632, 443–446 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Canton, J., Örlü, R., Chin, C., Hutchins, N., Monty, J., Schlatter, P.: On large-scale friction control in turbulent wall flow in low Reynolds number channels. Flow Turbul. Combust. 97, 811–827 (2016)

    Article  Google Scholar 

  • Canton, J., Örlü, R., Chin, C., Schlatter, P.: Reynolds number dependence of large-scale friction control in turbulent channel flow. Phys. Rev. Fluids 1(8), 081501 (2016)

    Article  Google Scholar 

  • Choi, H., Moin, P., Kim, J.: Active turbulence control for drag reduction in wall-bounded flows. J. Fluids Mech. 262, 75–110 (1994)

    Article  MATH  Google Scholar 

  • Dukowicz, J.K., Dvinsky, A.S.: Approximate factorization as a high order splitting for the implicit incompressible flow equations. J. Comput. Phys. 102(2), 336–347 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Fukagata, K., Iwamoto, K., Kasagi, N.: Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14, L73–L76 (2002)

    Article  MATH  Google Scholar 

  • Fukagata, K., Kasagi, N., Koumoutsakos, P.: A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces. Phys. Fluids 18, 051703 (2006)

    Article  Google Scholar 

  • Fukagata, K., Sugiyama, K., Kasagi, N.: On the lower bound of net driving power in controlled duct flows. Physica D 238, 1082–1086 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Gad-el-Hak, M.: Interactive control of turbulent boundary layers—a futuristic overview. AIAA J. 32(9), 1753–1765 (1994)

    Article  Google Scholar 

  • Ham, F.E., Lien, F.S., Strong, A.B.: A fully conservative second-order finite difference scheme for incompressible flow on nonuniform grids. J. Comput. Phys. 177(1), 117–133 (2002)

    Article  MATH  Google Scholar 

  • Hammond, E.P., Bewley, T.R., Moin, P.: Observed mechanisms for turbulence attenuation and enhancement in opposition-controlled wall-bounded flows. Phys. Fluids 10(9), 2421–2423 (1998)

    Article  Google Scholar 

  • Hœpffner, J., Fukagata, K.: Pumping or drag reduction? J. Fluid Mech. 635, 171–187 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Hunt, J.C., Wray, A.A., Moin, P., Eddies, streams, and convergence zones in turbulent flows. Center for Turbulence Research, Stanford University, Report No. 19890015184, (unpublished) (1988)

  • Hussain, A.K.M.F., Reynolds, W.C.: The mechanisms of an organized wave in turbulent shear flow. J. Fluid Mech. 41(2), 241–258 (1970)

    Article  Google Scholar 

  • Iwamoto, K., Suzuki, Y., Kasagi, N.: Reynolds number effect on wall turbulence: toward effective feedback control. Int. J. Heat Fluid Flow 23(5), 678–689 (2002)

    Article  Google Scholar 

  • Kajishima, T.: Finite-difference method for convective terms using non-uniform grid. Trans. JSME/B 65(633), 1607–1612 (1999)

    Article  Google Scholar 

  • Kang, S., Choi, H.: Active wall motion for skin-friction drag reduction. Phys. Fluids 12(12), 3301–3304 (2000)

    Article  MATH  Google Scholar 

  • Kasagi, N., Hasegawa, Y., Fukagata, K.: Toward cost-effective control of wall turbulence for skin friction drag reduction, In: Eckhardt B. (Ed.) Advances in Turbulence XII. Springer Proceedings in Physics, vol. 132, pp. 189–200. Springer, Berlin (2009)

  • Kasagi, N., Suzuki, Y., Fukagata, K.: Microelectromechanical systems?based feedback control of turbulence for skin friction reduction. Annu. Rev. Fluid Mech. 41, 231–251 (2009)

    Article  MATH  Google Scholar 

  • Kim, J.: Control of turbulent boundary layers. Phys. Fluids 15, 1093–1105 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, J., Bewley, T.: A linear systems approach to flow control. Annu. Rev. Fluid Mech. 39, 383–417 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Koganezawa, S., Mitsuishi, A., Shimura, T., Iwamoto, K., Mamori, H., Murata, A.: Pathline analysis of traveling wavy blowing and suction control in turbulent pipe flow for drag reduction. Int. J. Heat Fluid Flow 77, 388–401 (2019)

    Article  Google Scholar 

  • Lee, C., Kim, J., Choi, H.: Suboptimal control of turbulent channel flow for drag reduction. J. Fluids Mech. 358, 245–258 (1998)

    Article  MATH  Google Scholar 

  • Lee, C., Min, T., Kim, J.: Stability of a channel flow subject to wall blowing and suction in the form of a traveling wave. Phys. Fluids 20(10), 101513 (2008)

    Article  MATH  Google Scholar 

  • Lieu, B.K., Moarref, R., Jovanović, M.R.: Controlling the onset of turbulence by streamwise travelling waves. Part 2. Direct numerical simulation. J. Fluid Mech. 663, 100–119 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Mamori, H., Iwamoto, K., Murata, A.: Effect of the parameters of traveling waves created by blowing and suction on the relaminarization phenomena in fully developed turbulent channel flow. Phys. Fluids 26(1), 015101 (2014)

    Article  Google Scholar 

  • Min, T., Kang, S.M., Speyer, J.L., Kim, J.: Sustained sub-laminar drag in a fully developed channel flow. J. Fluid Mech. 558, 309–318 (2006)

    Article  MATH  Google Scholar 

  • Moarref, R., Jovanović, M.R.: Controlling the onset of turbulence by streamwise travelling waves. Part 1. Receptivity analysis. J. Fluid Mech. 663, 70–99 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Mori, E., Quadrio, M., Fukagata, K.: Turbulent drag reduction by uniform blowing over a two-dimensional roughness. Flow Turbul. Combust. 99, 765–785 (2017)

    Article  Google Scholar 

  • Nabae, Y.: Drag reduction effect by traveling wave-like wall deformation in turbulent channel flow, PhD Thesis, Keio University (2022)

  • Nabae, Y., Kawai, K., Fukagata, K.: Prediction of drag reduction effect by streamwise traveling wave-like wall deformation in turbulent channel flow at practically high Reynolds numbers. Int. J. Heat Fluid Flow 82, 108550 (2020)

    Article  Google Scholar 

  • Nakanishi, R., Mamori, H., Fukagata, K.: Relaminarization of turbulent channel flow using traveling wave-like wall deformation. Int. J. Heat Fluid Flow 35, 152–159 (2012)

    Article  Google Scholar 

  • Ogino, K., Mamori, H., Fukushima, N., Fukudome, K., Yamamoto, M.: Direct numerical simulation of Taylor–Couette turbulent flow controlled by a traveling wave-like blowing and suction. Int. J. Heat Fluid Flow 80, 108463 (2019)

    Article  Google Scholar 

  • Reynolds, W.C., Tiederman, W.G.: Stability of turbulent channel flow, with application to Malkus’s theory. J. Fluid Mech. 27(2), 253–272 (1967)

    Article  Google Scholar 

  • Ricco, P., Skote, M., Leschziner, M.A.: A review of turbulent skin-friction drag reduction by near-wall transverse forcing. Prog. Aerosp. Sci. 123, 100713 (2021)

    Article  Google Scholar 

  • Schoppa, W., Hussain, F.: A large-scale control strategy for drag reduction in turbulent boundary layers. Phys. Fluids 10, 1049–1051 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Shive, J.N.: Video: Similarities of Wave Behavior. AT &T Bell Labs. https://techchannel.att.com/play-video.cfm/2011/3/7/AT &T-Archives-Similarities-of-Wave-Behavior (1959)

  • Spalart, P.R., Moser, R.D., Rogers, M.M.: Spectral methods for the Navier–Stokes equations with one infinite and two periodic directions. J. Comput. Phys. 96(2), 297–324 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Suzuki, I., Shimura, T., Mitsuishi, A., Iwamoto, K., Murata, A.: Experimental study on drag reduction effect with traveling wave control using PIV measurement. IN: Proceedinsg of ASME-JSME-KSME Joint Fluids Engineering Conference 2019, San Francisco, USA, AJKFLUID2019-4855 (2019)

  • Tomiyama, N., Fukagata, K.: Direct numerical simulation of drag reduction in a turbulent channel flow using spanwise traveling wave-like wall deformation. Phys. Fluids 25, 105115 (2013)

    Article  Google Scholar 

  • Walsh, M.J.: Riblets as a viscous drag reduction technique. AIAA J. 21(4), 485–486 (1983)

    Article  Google Scholar 

  • White, C.M., Mungal, M.G.: Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech. 40, 235–256 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Yamamoto, Y., Tsuji, Y.: Numerical evidence of logarithmic regions in channel flow at Re\(_\tau = 8000\). Phys. Rev. Fluids 3(1), 012602 (2018)

  • Yoshida, Y., Shimura, T., Mitsuishi, A., Iwamoto, K., Murata, A.: LDV measurement of turbulent boundary layer flow under streamwise traveling wave control for drag reduction. In: Proceedings of 99th JSME Fluids Engineering Conference, OS05-10 (in Japanese) (2021)

Download references

Acknowledgements

The authors are grateful to Drs. S. Obi, K. Ando, and T. Kawata (Keio University) for fruitful discussions. This work was supported through JSPS KAKENHI (Grant Numbers 18H03758 and 21H05007) and JSPS Grant-in-Aid for JSPS Fellows (Grant Number 21J12282) by Japan Society for Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Nabae.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix 1: Parametric Study on \(\left( a,~k_x,~c \right)\)

Appendix 1: Parametric Study on \(\left( a,~k_x,~c \right)\)

As a preliminary study, we have performed a parametric study of the control parameters of the velocity amplitude, a, streamwise wavenumber, kx, and phasespeed, c. The velocity amplitude, streamwise wavenumber, and phasespeed are determined based on the results for the spanwise-uniform cases (Nabae et al. 2020), i.e., \(a^+ = 5,~10\), \(k_x^+ = 0.006,~0.011,~0.022\), and \(c^+ = 20,~25,~30,~35,~60,~90,~120\), while the spanwise wavelength, \(\lambda _z^+\), is set to \(\lambda _z^+ = 1131\). The grid resolution in each direction is \(\left( \Delta \xi _1^+,~\Delta \xi _2^+,~\Delta \xi _3^+ \right) = \left( 8.8,~0.9-6.0,~4.4 \right)\), which is a little coarser than that in the present study, i.e., \(\left( \Delta \xi _1^+,~\Delta \xi _2^+,~\Delta \xi _3^+ \right) = \left( 8.8,~0.9-6.0,~3.9 \right)\).

Figure 13 shows the contour of the drag reduction rate in \(c^+\)\(k_x^+\) plane at \(\mathrm{Re}_\tau = 360\) and \(a^+ = 5,~10\). For \(c^+ \ge 30\), regardless of the velocity amplitude, lower phasespeed results in higher drag reduction rate. In the cases with lower phasespeed, i.e., \(c^+ \lesssim 60\), the drag reduction rate increases as the wavenumber increases, while in the cases with higher phasespeed, i.e., \(c^+ \gtrsim 60\), the opposite trend is observed. These trends are similar to those in the case of the spanwise-uniform traveling wave (Nabae et al. 2020). Therefore, the relationship between the control parameters (\(a,~k_x,~c\)) and the drag reduction rate in the case of wave-machine-like traveling wave is basically similar to that in the case of spanwise-uniform traveling wave.

Fig. 13
figure 13

Contour of the drag reduction rate, \(R_{D}\), in \(c^+\)\(k_x^+\) plane at \(\mathrm{Re}_\tau = 360\) and \(\lambda _z^+=1131\); a \(a^+ = 5\); b \(a^+ = 10\). Circle, square, cross, and triangle represent the maximum drag reduction, drag reduction, drag increase, and little change cases, respectively

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabae, Y., Fukagata, K. Drag Reduction Effect of Streamwise Traveling Wave-Like Wall Deformation with Spanwise Displacement Variation in Turbulent Channel Flow. Flow Turbulence Combust 109, 1175–1194 (2022). https://doi.org/10.1007/s10494-022-00334-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-022-00334-w

Keywords

Navigation