Ahlgren, P., Jarneving, B., Rousseau, R.: Requirements for a cocitation similarity measure, with special reference to Pearson’s correlation coefficient. J. Am Soc. Inf. Sci. Technol. 54, 550–560 (2003)
Google Scholar
Boger, M., Veynante, D., Boughanem, H., Trouvé, A.: Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Proc. Combust. Inst. 27, 917–925 (1998)
Google Scholar
Bray, K.N.C., (1980) Turbulent flows with premixed reactants, In: P.A. Libby, P.A., and F.A.(eds.) Williams, Turbulent Reacting Flows, pp. 115–183, Springer Verlag, Berlin Heidelberg, New York
Brequigny, P., Halter, F., Mounaïm-Roussellea, C.: Lewis number and Markstein length effects on turbulent expanding flames in a spherical vessel. Exp. Therm. Fluid Sci. 73, 33–41 (2016)
Google Scholar
Burke, M.P., Chaos, M., Ju, Y., Dryer, F.L., Klippenstein, S.J.: Comprehensive H2–O2 kinetic model for high-pressure combustion. Int. J. Chem. Kin. 44, 444–474 (2012)
Google Scholar
Chakraborty, N., Cant, S.: Unsteady effects of strain rate and curvature on turbulent premixed flames in an inflow–outflow configuration. Combust. Flame 137, 129–147 (2004)
Google Scholar
Chakraborty, N., Cant, R.S.: Direct numerical simulation analysis of the flame surface density transport equation in the context of large eddy simulation. Proc. Combust. Inst. 32, 1445–1453 (2009)
Google Scholar
Chakraborty, N., Cant, R.S.: Effects of Lewis number on flame surface density transport in turbulent premixed combustion. Combust. Flame 158, 1768–1787 (2011)
Google Scholar
Chakraborty, N., Klein, M., Cant, R.S.: Stretch rate effects on displacement speed in turbulent premixed flame kernels in the thin reaction zones regime. Proc. Combust. Inst 31, 1385–1392 (2007)
Google Scholar
Chakraborty, N., Hartung, G., Katragadda, M., Kaminski, C.F.: A numerical comparison of 2D and 3D density-weighted displacement speed statistics and implications for laser based measurements of flame displacement speed. Combust. Flame 158, 1372–1390 (2011b)
Google Scholar
Chakraborty, N.: Comparison of displacement speed statistics of turbulent premixed flames in the regimes representing combustion in corrugated flamelets and thin reaction zones. Phys. Fluids 19, 105109 (2007)
MATH
Google Scholar
Chakraborty, N., Cant, R.S.: Influence of Lewis number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime. Phys. Fluids 17, 105105 (2005)
MATH
Google Scholar
Chakraborty, N., Klein, M., Cant, R.S.: Effects of turbulent Reynolds number on the displacement speed statistics in the thin reaction zones regime of turbulent premixed combustion. J. Combust. 2011, 473679 (2011a)
Google Scholar
Chaudhuri, S., Wu, F., Law, C.K.: Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations Phys. Rev. E 88, 033005 (2013)
Google Scholar
Chen, Z.: On the extraction of laminar flame speed and Markstein length from outwardly propagating spherical flames. Combust. Flame 158, 291–300 (2011)
Google Scholar
Chen, J.H., Im, H.G.: Correlation of flame speed with stretch in turbulent premixed methane/air flames. Proc. Combust. Inst 27, 819–826 (1998)
Google Scholar
Clavin, P.: Dynamic behavior of premixed flame fronts in laminar and turbulent flows. Prog. Energy Combust. Sci. 11, 1–59 (1985)
Google Scholar
Clavin, P., Joulin, G.: Premixed flames in large scale and high intensity turbulent flow. J. Phys. Lett. 44, L1–L12 (1983)
Google Scholar
Dave, H., Chaudhuri, S., S. : Evolution of local flame displacement speeds in turbulence. J. Fluid Mech. 884, A46 (2020). https://doi.org/10.1017/jfm.2019.896
MathSciNet
Article
MATH
Google Scholar
Dopazo, C., Cifuentes, L., Martin, J., Jimenez, C.: Strain rates normal to approaching iso-scalar surfaces in a turbulent premixed flame. Combust. Flame 162, 1729–1736 (2015)
Google Scholar
Echekki, T., Chen, J.H.: Unsteady strain rate and curvature effects in turbulent premixed methane-air flames. Combust. Flame 106, 184–202 (1996)
Google Scholar
Frankel, M.L., Sivashinsky, G.I.: On effects due to thermal expansion and lewis number in spherical flame propagation. Combust. Sci. Technol. 31, 131–138 (1983)
Google Scholar
Giannakopoulos, G.K., Gatzoulis, A., Frouzakis, E., Matalon, M., Tomboulides, A.G.: Consistent definitions of “Flame Displacement Speed” and “Markstein Length” for premixed flame propagation. Combust. Flame 162, 1249–1264 (2015)
Google Scholar
Hawkes, E.R., Cant, R.S.: Implications of a flame surface density approach to large eddy simulation of premixed turbulent combustion. Combust. Flame 126, 1617–1629 (2001)
Google Scholar
Herbert, A., Ahmed, U., Chakraborty, N., Klein, M.: Applicability of extrapolation relations for curvature and stretch rate dependences of displacement speed for statistically planar turbulent premixed flames. Combust. Theor. Modell. (2020). https://doi.org/10.1080/13647830.2020.1802066
MathSciNet
Article
Google Scholar
Hun, I., Huh, K.Y.: Roles of displacement speed on evolution of flame surface density for different turbulent intensities and Lewis numbers in turbulent premixed combustion. Combust. Flame 152, 194–205 (2008)
Google Scholar
Im, H.G., Chen, J.H.: Preferential diffusion effects on the burning rate of interacting turbulent premixed hydrogen-air flames. Combust. Flame 126, 246–258 (2002)
Google Scholar
Im, H.G., Arias, P.G., Chaudhuri, S., Uranakara, H.A.: Direct numerical simulations of statistically stationary turbulent premixed flames. Combust. Sci. Technol. 188, 1182–1198 (2016)
Google Scholar
Istratov, A.G., Librovich, V.B.: On the stability of gasdynamic discontinuities associated with chemical reaction. the case of a spherical flame. Astronautica Acta 14, 453–467 (1969)
Google Scholar
Karlovitz, B., Denniston, D.W., Knapschaefer, D.H., Wells, F.E.: Studies of turbulent flames. 4th Symposium (International) on combustion. Baltimore: Williams and Wilkins 4(1), 613–620 (1953). https://doi.org/10.1016/S0082-0784(53)80082-2
Karpov, V.P., Lipatnikov, A.N., Wolanski, P.: Finding the Markstein number using the measurements of expanding spherical laminar flames. Combust. Flame 109, 436–448 (1997)
Google Scholar
Kelley, A.P., Law, C.K.: Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames. Combust. Flame 156, 1844–1851 (2009)
Google Scholar
Kelley, A.P., Bechtold, J.K., Law, C.K.: Premixed flame propagation in a confining vessel with weak pressure rise. J. Fluid Mech. 691, 26–51 (2011)
MathSciNet
MATH
Google Scholar
Klein, M., Kasten, C., Chakraborty, N., Mukhadiyev, N., Im, H.G.: Turbulent scalar fluxes in Ηydrogen-Air premixed flames at low and high Karlovitz numbers. Combust. Theor. Modell. 22, 1033–1048 (2018)
Google Scholar
Klimov, A.M.: Laminar flame in a turbulent flow. Zhournal Prikladnoi Mekchaniki i Tekhnicheskoi Fiziki 3, 49–58 (1963)
Google Scholar
Lipatnikov, A.N., Chomiak, J.: Molecular transport effects on turbulent flame propagation and structure. Prog. Energy Combust. Sci. 31, 1–73 (2005)
MATH
Google Scholar
Lipatnikov, A.N., Shy, S.S., Li, W.: Experimental assessment of various methods of determination of laminar flame speed in experiments with expanding spherical flames with positive Markstein lengths. Combust. Flame 162, 2840–2854 (2015)
Google Scholar
Markstein, G.H.: Experimental and theoretical studies of flame front stability. J Aeronaut Sci 18, 199–209 (1951)
Google Scholar
Matalon, M., Matkowsky, B.J.: Flames as gas dynamic discontinuities. J Fluid Mech 124, 239–260 (1982)
MATH
Google Scholar
Papapostolou, V., Wacks, D.H., Klein, M., Chakraborty, N., Im, H.G.: Enstrophy transport conditional on local flow topologies in different regimes of premixed turbulent combustion. Sci. Rep. 7, 11545 (2017)
Google Scholar
Passot, T., Pouquet, P.: Numerical simulation of compressible homogeneous flows in the turbulent regime. J. Fluid Mech. 181, 441–466 (1987)
MATH
Google Scholar
Pera, C., Chevillard, S., Reveillon, R.: Effects of residual burnt gas heterogeneity on early flame propagation and on cyclic variability in spark-ignited engines. Combust. Flame 160, 1020–1032 (2013)
Google Scholar
Peters, N.: Turbulent Combustion, 1st edn. Cambridge University Press (2000)
MATH
Google Scholar
Peters, N., Terhoeven, P., Chen, J.H., Echekki, T.: Statistics of flame displacement speeds from computations of 2-D unsteady methane-air flames. Proc. Combust. Inst. 27, 833–839 (1998)
Google Scholar
Pope, S.B.: The evolution of surfaces in turbulence. Int. J. Engg. Sci. 26, 445–469 (1988)
MathSciNet
MATH
Google Scholar
Reddy, H., Abraham, J.: Two-dimensional direct numerical simulation evaluation of the flame-surface density model for flames developing from an ignition kernel in lean methane/air mixtures under engine conditions. Phys. Fluids 24, 105108 (2012)
Google Scholar
Rogallo, R.S.: Numerical experiments in homogeneous turbulence, NASA Ames Research Center Report No. 81315. (1981)
Ronney, P.D., Sivashinsky, G.I.: A theoretical study of propagation and extinction of nonsteady spherical flame fronts. SIAM J. Appl. Math. 49, 1029–1046 (1989)
MathSciNet
MATH
Google Scholar
Sabelnikov, V., Lipatnikov, A.N., Chakraborty, N., Nishiki, S., Hasagawa, T.: A balance equation for the mean rate of product creation in premixed turbulent flames. Proc. Combust. Inst. 36, 1893–1901 (2017)
Google Scholar
Venkateswaran, P., Marshall, A., Seitzman, J., Lieuwen, T.: Scaling turbulent flame speeds of negative Markstein length fuel blends using leading points concepts. Combust. Flame. 162(2), 375–387 (2015). https://doi.org/10.1016/j.combustflame.2014.07.028
Article
Google Scholar
Wacks, D.H., Chakraborty, N., Klein, M., Arias, P.G., Im, H.G.: Flow topologies in different regimes of premixed turbulent combustion: A direct numerical simulation analysis. Phys. Rev. F 1, 083401 (2016)
Google Scholar
Wu, C.K., Law, C.K.: On the determination of laminar flame speeds from stretched flames. Proc. Combust. Inst. 20, 1941–1949 (1984)
Google Scholar
Wu, F., Liang, W., Chen, Z., Ju, Y., Law, C.K.: Uncertainty in stretch extrapolation of laminar flame speed from expanding spherical flames. Proc. Combust. Inst. 35, 663–670 (2005)
Google Scholar
Yoo, C.S., Wang, Y., Trouvé, A., Im, H.G.: Characteristic boundary conditions for direct simulations of turbulent counterflow flames. Combust. Theor. Model. 9, 617–646 (2005)
MathSciNet
MATH
Google Scholar