Alkidas, A.C.: Combustion-chamber crevices: the major source of engine-out hydrocarbon emissions under fully warmed conditions. Prog. Energy Combust. Sci. 25(3), 253–273 (1999). https://doi.org/10.1016/S0360-1285(98)00026-4
Article
Google Scholar
Andrae, J., Björnbom, P., Edsberg, L., Eriksson, L.E.: A numerical study of side wall quenching with propane/air flames. Proc. Combust. Inst. 29(1), 789–795 (2002)
Google Scholar
Appel, J., Bockhorn, H., Frenklach, M.: Kinetic modeling of soot formation with detailed chemistry and physics: Laminar premixed flames of c2 hydrocarbons. Combust. Flame 121(1–2), 122–136 (2000). https://doi.org/10.1016/S0010-2180(99)00135-2
Article
Google Scholar
Barlow, R., Karpetis, A., Frank, J., Chen, J.Y.: Scalar profiles and no formation in laminar opposed-flow partially premixed methane/air flames. Combust. Flame 127(3), 2102–2118 (2001)
Google Scholar
Bechtold, J., Matalon, M.: The dependence of the markstein length on stoichiometry. Combust. Flame 127(1–2), 1906–1913 (2001)
Google Scholar
Bellenoue, M., Kageyama, T., Labuda, S., Sotton, J.: Direct measurement of laminar flame quenching distance in a closed vessel. Exp. Thermal Fluid Sci. 27(3), 323–331 (2003)
Google Scholar
Blanc, M., Guest, P., von Elbe, G., Lewis, B.: Ignition of explosive gas mixtures by electric sparks. i. minimum ignition energies and quenching distances of mixtures of methane, oxygen, and inert gases. J. Chem. Phys. 15(11), 798–802 (1947)
Google Scholar
Blanc, M.V., Guest, P.G., Elbe, G.V., Lewis, B.: Ignition of explosive gas mixtures by electric sparks. Symp. Combust. Flame Explos. Phenom. 3(1), 363–367 (1948)
Google Scholar
Boust, B., Sotton, J., Labuda, S., Bellenoue, M.: A thermal formulation for single-wall quenching of transient laminar flames. Combust. Flame 149(3), 286–294 (2007)
Google Scholar
Bowman, C.T., Hanson, R.K., Davidson, D.F., Gardiner, W.C., Lissianski, Jr.V., Smith, G.P., Golden, D.M., Frenklach, M., Goldenberg, M.: Gri2.11 reaction mechanism (1995)
Bruneaux, G., Akselvoll, K., Poinsot, T., Ferziger, J.: Flame-wall interaction simulation in a turbulent channel flow. Combust. Flame 107(1–2), 27–44 (1996)
Google Scholar
Burke, S.M., Burke, U., Mc Donagh, R., Mathieu, O., Osorio, I., Keesee, C., Morones, A., Petersen, E.L., Wang, W., DeVerter, T.A., et al.: An experimental and modeling study of propene oxidation. part 2: Ignition delay time and flame speed measurements. Combust. Flame 162(2), 296–314 (2015)
Google Scholar
Chauvy, M., Delhom, B., Reveillon, J., Demoulin, F.X.: Flame/wall interactions: Laminar study of unburnt HC formation. Flow Turbul. Combust. 84(3), 369–396 (2010)
MATH
Google Scholar
Davis, S., Law, C., Wang, H.: Propene pyrolysis and oxidation kinetics in a flow reactor and laminar flames. Combust. Flame 119(4), 375–399 (1999)
Google Scholar
Dreizler, A., Böhm, B.: Advanced laser diagnostics for an improved understanding of premixed flame–wall interactions. Proc. Combust. Inst. 35(1), 37–64 (2015)
Google Scholar
Elbe, G.V., Lewis, B.: Theory of ignition, quenching and stabilization of flames of nonturbulent gas mixtures. Symp. Combust. Flame Explos. Phenom. 3(1), 68–79 (1948)
Google Scholar
Ezekoye, O., Greif, R., Sawyer, R.F.: Increased surface temperature effects on wall heat transfer during unsteady flame quenching. Symp. (Int.) Combust. 24(1), 1465–1472 (1992). https://doi.org/10.1016/S0082-0784(06)80171-2
Article
Google Scholar
Frenklach, M., Wang, H.: Detailed modeling of soot particle nucleation and growth. Symp. (Int.) Combust. 23(1), 1559–1566 (1991). https://doi.org/10.1016/S0082-0784(06)80426-1
Article
Google Scholar
Friedman, R., Johnston, W.C.: The wall-quenching of Laminar propane flames as a function of pressure, temperature, and air-fuel ratio. J. Appl. Phys. 21(8), 791–795 (1950)
Google Scholar
Ganter, S., Heinrich, A., Meier, T., Kuenne, G., Jainski, C., Rißmann, M.C., Dreizler, A., Janicka, J.: Numerical analysis of laminar methane-air side-wall-quenching. Combust. Flame 186, 299–310 (2017)
Google Scholar
Goodwin, D., Moffat, H., Speth, R.: Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. version 2.3.0b (2017). Software available at http://www.cantera.org
Güralp, O., Hoffman, M., Assanis, D., Filipi, Z., Kuo, T.W., Najt, P., Rask, R.: Characterizing the effect of combustion chamber deposits on a gasoline hcci engine. SAE Trans. 115, 824–835 (2006)
Google Scholar
Häber, T., Zirwes, T., Roth, D., Zhang, F., Bockhorn, H., Maas, U.: Numerical simulation of the ignition of fuel/air gas mixtures around small hot particles. Z. Phys. Chem. 231(10), 1625–1654 (2017)
Google Scholar
Häber, T., Suntz, R.: Effect of different wall materials and thermal-barrier coatings on the flame-wall interaction of laminar premixed methane and propane flames. Int. J. Heat Fluid Flow 69, 95–105 (2018)
Google Scholar
Harris, M.E., Grumer, J., Elbe, G.V., Lewis, B.: Burning velocities, quenching, and stability data on nonturbulent flames of methane and propane with oxygen and nitrogen. Symp. Combust. Flame Explos. Phenom. 3(1), 80–89 (1948)
Google Scholar
Hasse, C., Bollig, M., Peters, N., Dwyer, H.A.: Quenching of laminar iso-octane flames at cold walls. Combust. Flame 122(1–2), 117–129 (2000)
Google Scholar
Haworth, D., Blint, R., Cuenot, B., Poinsot, T.: Numerical simulation of turbulent propane-air combustion with nonhomogeneous reactants. Combust. Flame 121(3), 395–417 (2000)
Google Scholar
Heinrich, A., Ganter, S., Kuenne, G., Jainski, C., Dreizler, A., Janicka, J.: 3d numerical simulation of a laminar experimental swq burner with tabulated chemistry. Flow Turbul. Combust. 100(2), 535–559 (2018a)
Google Scholar
Heinrich, A., Ries, F., Kuenne, G., Ganter, S., Hasse, C., Sadiki, A., Janicka, J.: Large Eddy simulation with tabulated chemistry of an experimental sidewall quenching burner. Int. J. Heat Fluid Flow 71, 95–110 (2018b)
Google Scholar
Hunter, J.: Matplotlib: a 2d graphics environment. Comput. Sci. Eng. 9, 90–95 (2007). https://doi.org/10.1109/MCSE.2007.55
Article
Google Scholar
Jainski, C., Rißmann, M., Böhm, B., Dreizler, A.: Experimental investigation of flame surface density and mean reaction rate during flame–wall interaction. Proc. Combust. Inst. 36(2), 1827–1834 (2017a)
Google Scholar
Jainski, C., Rißmann, M., Böhm, B., Janicka, J., Dreizler, A.: Sidewall quenching of atmospheric laminar premixed flames studied by laser-based diagnostics. Combust. Flame 183, 271–282 (2017b)
Google Scholar
Jainski, C., Rißmann, M., Jakirlic, S., Böhm, B., Dreizler, A.: Quenching of premixed flames at cold walls: effects on the local flow field. Flow Turbul. Combust. 100(1), 177–196 (2018)
Google Scholar
Kathrotia, T., Riedel, U., Seipel, A., Moshammer, K., Brockhinke, A.: Experimental and numerical study of chemiluminescent species in low-pressure flames. Appl. Phys. B 107(3), 571–584 (2012)
Google Scholar
Kazakov, A., Frenklach, M.: Drm reaction mechanism (1994). www.me.berkeley.edu/drm
Kee, R., Coltrin, M., Glarborg, P.: Chemically Reacting Flow: Theory and Practice. Wiley, New York (2005)
Google Scholar
Kim, K., Lee, D., Kwon, S.: Effects of thermal and chemical surface–flame interaction on flame quenching. Combust. Flame 146(1–2), 19–28 (2006)
Google Scholar
Kliewer, C., Patterson, B.: Multiparameter spatio-thermochemical probing of flame-wall interactions advanced with coherent raman imaging. Tech. rep., Sandia National Lab.(SNL-CA), Livermore, CA (United States) (2016)
Kosaka, H., Zentgraf, F., Scholtissek, A., Bischoff, L., Häber, T., Suntz, R., Albert, B., Hasse, C., Dreizler, A.: Wall heat fluxes and co formation/oxidation during laminar and turbulent side-wall quenching of methane and dme flames. Int. J. Heat Fluid Flow 70, 181–192 (2018)
Google Scholar
Kosaka, H., Zentgraf, F., Scholtissek, A., Hasse, C., Dreizler, A.: Effect of flame–wall interaction on local heat release of methane and DME combustion in a side-wall quenching geometry. Flow Turbul. Combust. 31(1), 99 (2019)
Google Scholar
Labuda, S., Karrer, M., Sotton, J., Bellenoue, M.: Experimental study of single-wall flame quenching at high pressures. Combust. Sci. Technol. 183(5), 409–426 (2011). https://doi.org/10.1080/00102202.2010.528815
Article
Google Scholar
Li, J., Zhao, Z., Kazakov, A., Dryer, F.: Reduced methane reaction mechanism (2007)
Lindstedt, R., Lockwood, F., Selim, M.: Detailed kinetic modelling of chemistry and temperature effects on ammonia oxidation. Combust. Sci. Technol. 99(4–6), 253–276 (1994)
Google Scholar
Lindstedt, R., Skevis, G.: Chemistry of acetylene flames. Combust. Sci. Technol. 125(1–6), 73–137 (1997)
Google Scholar
Liu, Y., Rogg, B.: Modelling of thermally radiating diffusion flames with detailed chemistry and transport. In: Heat Transfer in Radiating and Combusting Systems, pp. 114–127. Springer (1991)
Lu, J.H., Ezekoye, O., Greif, R., Sawyer, R.F.: Unsteady heat transfer during side wall quenching of a laminar flame. Symp. (Int.) Combust. 23(1), 441–446 (1991). https://doi.org/10.1016/S0082-0784(06)80289-4
Article
Google Scholar
Lu, T., Law, C.: A criterion based on computational singular perturbation for the identification of quasi steady state species: a reduced mechanism for methane oxidation with no chemistry. Combust. Flame 154(4), 761–774 (2008)
Google Scholar
Luo, Y., Strassacker, C., Wen, X., Sun, Z., Maas, U., Hasse, C.: Strain rate effects on head-on quenching of laminar premixed methane-air flames. In: Flow, Turbulence and Combustion, pp. 1–17 (2020)
Mann, M., Jainski, C., Euler, M., Böhm, B., Dreizler, A.: Transient flame-wall interactions: experimental analysis using spectroscopic temperature and CO concentration measurements. Combust. Flame 161(9), 2371–2386 (2014)
Google Scholar
Martienssen, W., Warlimont, H.: Landolt-Börnstein: Numerical data and functional relationships in science and technology (New series), vol. 2C1. Springer, Berlin (2009). https://doi.org/10.1007/978-3-540-44760-3
Book
Google Scholar
Metcalfe, W.K., Burke, S.M., Ahmed, S.S., Curran, H.J.: A hierarchical and comparative kinetic modeling study of c1–c2 hydrocarbon and oxygenated fuels. Int. J. Chem. Kinet. 45(10), 638–675 (2013)
Google Scholar
Miesse, C.M., Masel, R.I., Jensen, C.D., Shannon, M.A., Short, M.: Submillimeter-scale combustion. AIChE J. 50(12), 3206–3214 (2004). https://doi.org/10.1002/aic.10271
Article
Google Scholar
Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62(3), 183–200 (1999)
MATH
Google Scholar
Niemeyer, K.E., Sung, C.J., Raju, M.P.: Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis. Combust. Flame 157(9), 1760–1770 (2010)
Google Scholar
Pepiot-Desjardins, P., Pitsch, H.: An efficient error-propagation-based reduction method for large chemical kinetic mechanisms. Combust. Flame 154(1–2), 67–81 (2008)
MATH
Google Scholar
Peters, N.: Turbulent combustion (2001)
Poinsot, T., Haworth, D.C., Bruneaux, G.: Direct simulation and modeling of flame-wall interaction for premixed turbulent combustion. Combust. Flame 95(1–2), 118–132 (1993)
Google Scholar
Popp, P., Baum, M.: Analysis of wall heat fluxes, reaction mechanisms, and unburnt hydrocarbons during the head-on quenching of a laminar methane flame. Combust. Flame 108(3), 327–348 (1997)
Google Scholar
Proch, F., Kempf, A.M.: Modeling heat loss effects in the large eddy simulation of a model gas turbine combustor with premixed flamelet generated manifolds. Proc. Combust. Inst. 35(3), 3337–3345 (2015)
Google Scholar
Qin, Z., Lissianski, V.V., Yang, H., Gardiner, W.C., Davis, S.G., Wang, H.: An optimized reaction model of c1-c3combustion (2000)
Ranzi, E., Frassoldati, A., Grana, R., Cuoci, A., Faravelli, T., Kelley, A., Law, C.: Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Prog. Energy Combust. Sci. 38(4), 468–501 (2012)
Google Scholar
Rißmann, M., Jainski, C., Mann, M., Dreizler, A.: Flame-flow interaction in premixed turbulent flames during transient head-on quenching. Flow Turbul. Combust. 98(4), 1025–1038 (2017). https://doi.org/10.1007/s10494-016-9795-5
Article
Google Scholar
Saiki, Y., Fan, Y., Suzuki, Y.: Radical quenching of metal wall surface in a methane-air premixed flame. Combust. Flame 162(10), 4036–4045 (2015). https://doi.org/10.1016/j.combustflame.2015.07.043
Article
Google Scholar
Sankaran, R., Hawkes, E., Chen, J., Lu, T., Law, C.: Structure of a spatially developing turbulent lean methane-air bunsen flame. Proc. Combust. Inst. 31(1), 1291–1298 (2007)
Google Scholar
Schäfer, M., Stosic, N.: The parallel multigrid cfd code fastest. In: Second World Conference in Applied Computational Fluid Dynamics, pp. 39.1–39.6 (1994). http://tubiblio.ulb.tu-darmstadt.de/64801/
Schuller, T., Durox, D., Candel, S.: Self-induced combustion oscillations of laminar premixed flames stabilized on annular burners. Combust. Flame 135(4), 525–537 (2003). https://doi.org/10.1016/j.combustflame.2003.08.007
Article
Google Scholar
Singh, P.: Measurement of temperature of an axisymmetric flame using shearing interferometry and Fourier fringe analysis technique. Opt. Eng. 43(2), 387 (2004)
Google Scholar
Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Jr., W.C., Lissianski, V.V., Qin, Z.: Gri 3.0 reaction mechanism (1995). http://www.me.berkeley.edu/gri_mech
Sotton, J., Boust, B., Labuda, S.A., Bellenoue, M.: Head-on quenching of transient laminar flame: heat flux and quenching distance measurements. Combust. Sci. Technol. 177(7), 1305–1322 (2005)
Google Scholar
Stagni, A., Frassoldati, A., Cuoci, A., Faravelli, T., Ranzi, E.: Skeletal mechanism reduction through species-targeted sensitivity analysis. Combust. Flame 163, 382–393 (2016)
Google Scholar
Strassacker, C., Bykov, V., Maas, U.: REDIM reduced modeling of quenching at a cold wall including heterogeneous wall reactions. Int. J. Heat Fluid Flow 69, 185–193 (2018). https://doi.org/10.1016/j.ijheatfluidflow.2017.12.011
Article
Google Scholar
Strassacker, C., Bykov, V., Maas, U.: REDIM reduced modeling of flame quenching at a cold wall—the influence of detailed transport models and detailed mechanisms. Combust. Sci. Technol. 191(2), 208–222 (2019). https://doi.org/10.1080/00102202.2018.1440216
Article
Google Scholar
Suckart, D., Linse, D., Schutting, E., Eichlseder, H.: Experimental and simulative investigation of flame-wall interactions and quenching in spark-ignition engines. Autom. Engine Technol. 49, 949 (2016). https://doi.org/10.1007/s41104-016-0015-z
Article
Google Scholar
Williams, F.: Chemical-kinetic mechanisms for combustion applications. San Diego Mechanism web page, Mechanical and Aerospace Engineering (Combustion Research), at San Diego. (2018). (www.combustion.ucsd.edu)
Valorani, M., Creta, F., Goussis, D., Lee, J., Najm, H.: An automatic procedure for the simplification of chemical kinetic mechanisms based on csp. Combust. Flame 146(1–2), 29–51 (2006)
Google Scholar
Wang, H., You, X., Joshi, A., Davis, S., Las-kin, A., Egolfopoulos, F., Law, C.: Usc mech version ii. high-temperature combustion reaction model of h2/co/c1-c4 compounds (2007)
Wang, K., Xu, R., Parise, T., Shao, J., Movaghar, A., Lee, D., Park, J.W., Gao, Y., Lu, T., Egolfopoulos, F., et al.: A physics-based approach to modeling real-fuel combustion chemistry–iv. hychem modeling of combustion kinetics of a bio-derived jet fuel and its blends with a conventional jet a. Combust. Flame 198, 477–489 (2018)
Google Scholar
Weller, H., Tabor, G., Jasak, H., Fureby, C.: OpenFOAM, openCFD ltd. (2017). Software available at https://openfoam.org
Yang, H., Feng, Y., Wu, Y., Wang, X., Jiang, L., Zhao, D., Yamashita, H.: A surface analysis-based investigation of the effect of wall materials on flame quenching. Combust. Sci. Technol. 183(5), 444–458 (2011). https://doi.org/10.1080/00102202.2010.530323
Article
Google Scholar
Yang, H., Feng, Y., Wang, X., Jiang, L., Zhao, D., Hayashi, N., Yamashita, H.: Oh-plif investigation of wall effects on the flame quenching in a slit burner. Proc. Combust. Inst. 34(2), 3379–3386 (2013). https://doi.org/10.1016/j.proci.2012.07.038
Article
Google Scholar
Zhang, F., Zirwes, T., Habisreuther, P., Bockhorn, H.: Effect of unsteady stretching on the flame local dynamics. Combust. Flame 175, 170–179 (2017). https://doi.org/10.1016/j.combustflame.2016.05.028
Article
Google Scholar
Zhang, F., Zirwes, T., Häber, T., Bockhorn, H., Trimis, D., Suntz, R.: Near wall dynamics of premixed flames. In: Proceedings of the Combustion Institute (2020). https://doi.org/10.1016/j.proci.2020.06.058
Zirwes, T., Zhang, F., Denev, J., Habisreuther, P., Bockhorn, H.: Automated code generation for maximizing performance of detailed chemistry calculations in OpenFOAM. In: High Performance computing in science and engineering’17, pp. 189–204. Springer (2018). https://doi.org/10.1007/978-3-319-68394-2_11
Zirwes, T., Zhang, F., Häber, T., Bockhorn, H.: Ignition of combustible mixtures by hot particles at varying relative speeds. Combust. Sci. Technol. 191(1), 178–195 (2019a). https://doi.org/10.1080/00102202.2018.1435530
Article
Google Scholar
Zirwes, T., Zhang, F., Habisreuther, P., Hansinger, M., Bockhorn, H., Pfitzner, M., Trimis, D.: Quasi-DNS dataset of a piloted flame with inhomogeneous inlet conditions. Flow Turbul. Combust. (2019b). https://doi.org/10.1007/s10494-019-00081-5
Article
Google Scholar
Zádor, J., Najm, H.: Automated exploration of the mechanism of elementary reactions. Technical report., Sandia National Laboratories, Livermore, CA (United States), note=Report No. SAND2012-8095 (2012)