Skip to main content
Log in

Computational Investigation of Weakly Turbulent Flame Kernel Growths in Iso-Octane Droplet Clouds in CVC Conditions

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Numerical simulations of turbulent flame kernel growths in monodisperse clouds of iso-octane liquid droplets are conducted in conditions relevant to constant volume combustors. The simulations make use of a low-Mach number Navier-Stokes solver and a thermodynamic pressure evolution model has been implemented to reproduce the pressure variation that may be issued from either experiments or from a standard (i.e., analytical) compression law. Chemistry is described with a representative skeletal mechanism featuring 29 species and 48 elementary reaction steps. The computational results clearly confirm the enhancement of flame propagation in constant volume combustion conditions. The impact of the droplet diameter on the turbulent flame development is scrutinized for two distinct values of the Stokes number St equal to 0.1 and 1.0. Significant influence on the flame dynamics is put into evidence. This is a direct outcome of the equivalence ratio and temperature heterogeneities, which are themselves very sensitive to the choice of the Stokes number value. Then, small-scale turbulence-scalar interactions (TSI) are studied by analyzing the fields of the scalar gradients and strain-rate. Their dynamics is investigated for both non-reactive and reactive two-phase flows conditions. The TSI analysis is performed on the basis of time evolution equations written for quantities that characterize the couplings between the velocity gradient tensor and scalar gradients vectors. Special emphasis is placed on the possible influence of mass exchange terms between the liquid and gaseous phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. The droplet diameter is approximately 6.1 μ m for cases associated to St = 1.0. It is approximately 1.9 μ m for those corresponding to St = 0.1, the values of the kinetic and evaporation relaxation times are thus significantly smaller (i.e., 10 times smaller) than those associated with simulations conducted at St = 1.0

  2. The retained definition of the premixedness index is provided in Appendix B.

  3. A similar behaviour was also put into evidence in the theoretical work of Gonzalez and Paranthoën [53, 54], which was devoted to the effects variable mass density on the kinematics of scalar gradient.

  4. Once normalized by its value at stoichiometry, i.e., yCO, st, the carbon atom to oxygen atom mass fractions ratio, i.e., yCO/yCO, st, can be thought as the equivalence ratio.

  5. The transport term TR is sufficiently small to be discarded from the present analysis.

  6. One may however expect that the corresponding correlation is decreased for sufficiently large values of the velocity fluctuations RMS normalized by the laminar flame velocity \({S_{L}^{0}}\).

References

  1. Labarrere, L., Poinsot, T., Dauptain, A., Duchaine, F., Bellenoue, M., Boust, B.: Experimental and numerical study of cyclic variations in a constant volume combustion chamber. Combust. Flame 172, 49 (2016)

    Google Scholar 

  2. Bhagatwala, A., Chen, J.H., Lu, T.: Direct numerical simulations of HCCI/SACI with ethanol. Combust. Flame 161(7), 1826 (2014)

    Google Scholar 

  3. Bhagatwala, A., Sankaran, R., Kokjohn, S., Chen, J.H.: Numerical investigation of spontaneous flame propagation under RCCI conditions. Combust. Flame 162(9), 3412 (2014)

    Google Scholar 

  4. Zhang, F., Yu, R., Bai, X.S.: Effect of split fuel injection on heat release and pollutant emissions in partially premixed combustion of PRF70/air/EGR mixtures. Appl. Energy 149, 283 (2015)

    Google Scholar 

  5. Wang, L., Maxey, M.R.: Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 27 (1993)

    Google Scholar 

  6. Jenny, P., Roekaerts, D., Beishuizen, N.: Modeling of turbulent dilute spray combustion. Prog. Energy Combust. Sci. 38(6), 846 (2012)

    Google Scholar 

  7. Reveillon, J., Demoulin, F.: Effects of the preferential segregation of droplets on evaporation and turbulent mixing. J. Fluid Mech. 583, 273 (2007)

    MATH  Google Scholar 

  8. Reveillon, J., Demoulin, F.: Evaporating droplets in turbulent reacting flows. Proc. Combust. Inst. 31(2), 2319 (2007)

    Google Scholar 

  9. Kah, D., Laurent, F., Fréret, L., de Chaisemartin, S., Reveillon, J., Massot, M.: Eulerian quadrature-based moment models for dilute polydisperse evaporating sprays. Flow Turbul. Combust. 85, 649 (2010)

    MATH  Google Scholar 

  10. Bouali, Z., Pera, C., Reveillon, J.: Numerical analysis of the influence of two-phase flow mass and heat transfer on n-heptane autoignition. Combust. Flame 159 (6), 2056 (2012)

    Google Scholar 

  11. Dombard, J., Leveugle, B., Selle, L., Reveillon, J., Poinsot, T., D’Angelo, Y.: Modeling heat transfer in dilute two-phase flows using the mesoscopic Eulerian formalism. Int. J. Heat and Mass Transfer 55(5), 1486 (2012)

    MATH  Google Scholar 

  12. Bouali, Z., Duret, B., Demoulin, F.X., Mura, A.: DNS analysis of small-scale turbulence-scalar interactions in evaporating two-phase flows. Int. J. Multiphase Flow 85, 326 (2016)

    MathSciNet  Google Scholar 

  13. Wacks, D.H., Chakraborty, N., Mastorakos, E.: Statistical analysis of turbulent flame-droplet interaction: a direct numerical simulation study. Flow Turbul. Combust. 96(2), 573 (2016)

    Google Scholar 

  14. Wacks, D.H., Chakraborty, N.: Flame structure and propagation in turbulent flame-droplet interaction: a direct numerical simulation analysis. Flow Turbul. Combust. 96(4), 1053 (2016)

    Google Scholar 

  15. Pope, S.: PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11(2), 119 (1985)

    Google Scholar 

  16. Borghi, R.: Turbulent combustion modelling. Prog. Energy Combust. Sci. 14(4), 245 (1988)

    Google Scholar 

  17. Dopazo, C.: Recent Developments in PDF Methods, pp 375–474. Academic Press Limited, London (1994)

    MATH  Google Scholar 

  18. Mura, A., Robin, V., Champion, M.: Modeling of scalar dissipation in partially premixed turbulent flames. Combust. Flame 149(1-2), 217 (2007)

    Google Scholar 

  19. Mura, A., Borghi, R.: Towards an extended scalar dissipation equation for turbulent premixed combustion. Combust. Flame 133(1), 193 (2003)

    Google Scholar 

  20. Bilger, R.W.: Some aspects of scalar dissipation. Flow Turbul. Combust. 72(2), 93 (2004)

    MATH  Google Scholar 

  21. Xia, J., Luo, K.H.: Direct numerical simulation of diluted combustion by evaporating droplets. Proc. Combust. Inst. 32(2), 2267 (2009)

    Google Scholar 

  22. Beishuizen, N.: PDF modelling and particle-turbulence interaction of turbulent spray flames. Ph.D. thesis, TU Delft (2008)

  23. Xia, J., Luo, K.H.: Direct numerical simulation of inert droplet effects on scalar dissipation rate in turbulent reacting and non-reacting shear layers. Flow Turbul. Combust. 84(3), 397 (2010)

    MATH  Google Scholar 

  24. Gomet, L., Robin, V., Mura, A.: Lagrangian modelling of turbulent spray combustion under liquid rocket engine conditions. Acta Astronaut. 94(1), 184 (2014)

    Google Scholar 

  25. Hu, Y., Olguin, H., Gutheil, E.: Transported joint probability density function simulation of turbulent spray flames combined with a spray flamelet model using a transported scalar dissipation rate. Combust. Sci. Technol. 189(2), 322 (2017)

    Google Scholar 

  26. Zhao, P., Wang, L., Chakraborty, N.: Strain rate and flame orientation statistics in the near-wall region for turbulent flame-wall interaction. Combust. Theor. Model. 22(5), 921 (2018)

    Google Scholar 

  27. Mura, A., Tsuboi, K., Hasegawa, T.: Modelling of the correlation between velocity and reactive scalar gradients in turbulent premixed flames based on DNS data. Combust. Theor. Model. 12(4), 671 (2008)

    MATH  Google Scholar 

  28. Chakraborty, N., Champion, M., Mura, A., Swaminathan, N.: Scalar dissipation rate approach. Turbulent Premixed Flames pp. 74–102 (2011)

  29. Chakraborty, N., Swaminathan, N.: Influence of the Damköhler number on turbulence-scalar interaction in premixed flames. II. Model development. Phys. Fluids 19(4), 045104 (2007)

    MATH  Google Scholar 

  30. Nomura, K.K., Post, G.K.: The structure and dynamics of vorticity and rate of strain in incompressible homogeneous turbulence. J. Fluid Mech. 377, 65 (1998)

    MathSciNet  MATH  Google Scholar 

  31. Diamessis, P., Nomura, K.K.: Interaction of vorticity, rate-of-strain, and scalar gradient in stratified homogeneous sheared turbulence. Phys. Fluids 12(5), 1166 (2000)

    MATH  Google Scholar 

  32. Tsinober, A.: An Informal Conceptual Introduction to Turbulence, vol. 483. Springer, Berlin (2009)

    MATH  Google Scholar 

  33. Zhao, S., Er-raiy, A., Bouali, Z., Mura, A.: Dynamics and kinematics of the reactive scalar gradient in weakly turbulent premixed flames. Combust. Flame 198, 436 (2018)

    Google Scholar 

  34. Reveillon, J., Péra, C., Bouali, Z.: Examples of the potential of DNS for the understanding of reactive multiphase flows. Int. J. Spray Combust. Dyn. 3, 63 (2011)

    Google Scholar 

  35. Chauvy, M., Delhom, B., Reveillon, J., Demoulin, F.X.: Flame/wall interactions: laminar study of unburnt HC formation. Flow Turbul. Combust. 84, 369 (2010)

    MATH  Google Scholar 

  36. Er-Raiy, A., Bouali, Z., Reveillon, J., Mura, A.: Optimized single-step (OSS) chemistry models for the simulation of turbulent premixed flame propagation. Combust. Flame 192, 130 (2018)

    Google Scholar 

  37. Falgout, R.D., Yang, U.M.: HYPRE: a Library of High Performance Preconditioners, pp 632–641. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  38. Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Shumaker, D.E., Woodward, C.S.: SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Soft. 31, 363 (2005)

    MathSciNet  MATH  Google Scholar 

  39. Crowe, C., Sharma, M., Stock, D.: The particle-source-in cell (PSI-CELL) model for gas-droplet flows. J. Fluids Eng. 99(2), 325 (1977)

    Google Scholar 

  40. Hasse, C., Bollig, M., Peters, N., Dwyer, A.H.: Quenching of laminar iso-octane flames at cold walls. Combust. Flame 122(1), 117 (2000)

    Google Scholar 

  41. Rogallo, R.S.: Numerical experiments in homogeneous turbulence. Tech. Rep. NASA TM 81315, NASA Ames Res. Center (1981)

  42. Passot, T., Pouquet, A.: Numerical simulation of compressible homogeneous flows in the turbulent regime. J. Fluid Mech. 181, 441 (1987)

    MATH  Google Scholar 

  43. Bassenne, M., Urzay, J., Park, G.I., Moin, P.: Constant-energetics physical-space forcing methods for improved convergence to homogeneous-isotropic turbulence with application to particle-laden flows. Phys. Fluids 28(3) (2016)

    Google Scholar 

  44. Kerstein, A.R., Law, C.K.: Percolation in combusting sprays I: Transition from cluster combustion to percolate combustion in non-premixed sprays. Symp. Combust. 19(1), 961 (1982)

    Google Scholar 

  45. Borghi, R., Loison, S.: Studies of dense-spray combustion by numerical simulation with a cellular automaton. Symp. Combust. 24, 1541 (1992)

    Google Scholar 

  46. Borghi, R., Champion, M.: Modelisatioń et théorie des flammes (Editions Technip) (2000)

  47. Ahmed, U., Turquand d’Auzay, C., Muto, M., Chakraborty, N., Kurose, R.: Statistics of reaction progress variable and mixture fraction gradients of a pulverised coal jet flame using direct numerical simulation data. Proc. Combust. Inst. 37, 2821 (2019)

    Google Scholar 

  48. Lipatnikov, A.N., Chomiak, J.: Effects of premixed flames on turbulence and turbulent scalar transport. Prog. Energy Combust. Sci. 36, 1 (2010)

    Google Scholar 

  49. Sabelnikov, V.A., Lipatnikov, A.N.: Recent advances in understanding of thermal expansion effects in premixed turbulent flames. Ann. Rev. Fluid Mech. 49, 91 (2017)

    MathSciNet  MATH  Google Scholar 

  50. Hamlington, P.E., Poludnenko, A.Y., Oran, E.S.: Interactions between turbulence and flames in premixed reacting flows. Phys. Fluids 23(12) (2011)

    Google Scholar 

  51. Hartung, G., Hult, J., Kaminski, C.F., Rogerson, J.W., Swaminathan, N.: Effect of heat release on turbulence and scalar-turbulence interaction in premixed combustion. Phys. Fluids 20, 035110 (2008)

    MATH  Google Scholar 

  52. Steinberg, A.M., Driscoll, J.F., Swaminathan, N.: Statistics and dynamics of turbulence-flame alignment in premixed combustion. Combust. Flame 159(8), 2576 (2012)

    Google Scholar 

  53. Gonzalez, M., Paranthoën, P.: Effect of density step on stirring properties of a strain flow. Fluid Dyn. Res. 41, 035508 (2009)

    MATH  Google Scholar 

  54. Gonzalez, M., Paranthoën, P.: Effects of variable mass density on the kinematics of scalar gradient. Phys. Fluids 23, 075107 (2011)

    Google Scholar 

  55. Steinberg, A.M., Coriton, B., Frank, J.H.: Influence of combustion on principal strain-rate transport in turbulent premixed flames. Proc. Combust. Inst. 35, 1287 (2015)

    Google Scholar 

  56. Brethouwer, G., Hunt, J.C.R., Nieuwstadt, F.T.M: Micro structure and Lagrangian statistics of the scalar field with a mean gradient in isotropic turbulence. J. Fluid Mech. 70, 33 (2002)

    MATH  Google Scholar 

  57. Garcia, A., Gonzalez, M.: Analysis of passive scalar gradient alignment in a simplified three-dimensional case. Phys. Fluids 18(5), 058101 (2006)

    Google Scholar 

  58. Chakraborty, N., Klein, M., Swaminathan, N.: Effects of Lewis number on the reactive scalar gradient alignment with local strain rate in turbulent premixed flames. Proc. Combust. Inst. 32, 1409 (2009)

    Google Scholar 

  59. Bray, K., Domingo, P., Vervisch, L.: Role of the progress variable in models for partially premixed turbulent combustion. Combust. Flame 141(4), 431 (2005)

    Google Scholar 

  60. Robin, V., Mura, A., Champion, M., Degardin, O., Renou, B., Boukhalfa, M.: Experimental and numerical analysis of stratified turbulent V-shaped flames. Combust. Flame 153(1), 288 (2008)

    Google Scholar 

  61. Robin, V., Mura, A., Champion, M., Plion, P.: Modélisation de la combustion turbulente des mélanges hétérogènes en richesse : Des flammes de prémélange aux flammes de diffusion. Comptes Rendus Mécanique 337(8), 596 (2009)

    Google Scholar 

  62. Robin, V., Guilbert, N., Mura, A., Champion, M.: Modélisation de la combustion turbulente des mélanges hétérogènes en richesse. Application au calcul d’une flamme stabilisée par l’élargissement brusque d’un canal bidimensionnel. Comptes Rendus Mécanique 338(1), 40 (2010)

    MATH  Google Scholar 

  63. Malkeson, S.P., Chakraborty, N.: Statistical analysis of cross scalar dissipation rate transport in turbulent partially premixed flames: a direct numerical simulation study. Flow Turbul. Combust. 87, 313 (2011)

    MATH  Google Scholar 

  64. Pires Da Cruz, A., Dean, A., Grenda, J.: A numerical study of the laminar flame speed of stratified methane/air flames. Proc. Combust. Inst. 28, 1925 (2000)

    Google Scholar 

  65. Renou, B., Samson, E., Boukhalfa, A.: An experimental study of freely propagating turbulent propane/air flames in stratified inhomogeneous mixtures. Combust. Sci. Technol. 176, 1867 (2004)

    Google Scholar 

  66. Buttay, R., Gomet, L., Lehnasch, G., Mura, A.: Highly resolved numerical simulation of combustion downstream of a rocket engine igniter. Shock Waves 27(4), 655 (2017)

    Google Scholar 

  67. Yamashita, H., Shimada, M., Takeno, T.: A numerical study on flame stability at the transition point of jet diffusion flames. Symp. Combust. 26(1), 27 (1996)

    Google Scholar 

Download references

Acknowledgments

This work is funded by the CAPA Program (CNRS, ENSMA, SAFRAN, and MBDA) of the ANR (Agence Nationale de la Recherche). A part of this work has been performed using high-performance computing (HPC) resources from GENCI (Grand Equipement National de Calcul Intensif)-[CCRT/CINES/IDRIS] under Grant A0052B07456.

Funding

As stated in the acknowledgements section, this work has been funded by the CAPA Program (CNRS, ENSMA, SAFRAN, and MBDA) of the ANR (Agence Nationale de la Recherche).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Mura.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Thermodynamic Pressure Variation with Artificial Mass Sources and Chemical Heat Release

The thermodynamic pressure evolution is deduced from the analysis of the normalized EoS together with a non-dimensional form of the NSE featuring an artificial mass source term \(\dot {m}_{p}\), see Eq. 2d in Section 2. Since Asphodele resolves the non-dimensional form of NSE, the thermodynamic pressure evolution is considered within the corresponding non-dimensional framework:

$$ \begin{array}{@{}rcl@{}} \frac{\partial \rho^{+}}{\partial t^{+}} + \frac{\partial (\rho^{+} u_{j}^{+})}{\partial x_{j}^{+}} &=& \dot{m}_{p}^{+} + \dot{d}_{\rho}^{+} \qquad\qquad\qquad\qquad\qquad\quad\left( \rho_{\infty} u_{ref}x_{ref}^{-1} \right) \end{array} $$
(26a)
$$ \begin{array}{@{}rcl@{}} \frac{\partial \rho^{+} u_{i}^{+}}{\partial t^{+}} + \frac{\partial \left( \rho^{+} u_{i}^{+} u_{j}^{+}\right)}{\partial x_{j}^{+}} &=& - \frac{\partial p_{1}^{+}}{\partial x_{i}^{+}} +\frac{\partial \tau^{+}_{ij}}{\partial x_{j}^{+}}+\dot{m}_{p}^{+} u_{i}^{+}+\dot{d}_{\rho u_{i}}^{+} \qquad\left( {\rho_{\infty} u_{ref}^{2}}{x_{ref}^{-1}} \right) \end{array} $$
(26b)
$$ \begin{array}{@{}rcl@{}} \frac{\partial \rho^{+} h_{s}^{+}}{\partial t^{+}}+\frac{\partial \left( \rho^{+} h_{s}^{+} u_{j}^{+}\right)}{\partial x_{j}^{+}}&=& \frac{\gamma_{\infty}-1}{\gamma_{\infty}}\frac{d p_{0}^{+}}{d t^{+}}+\dot{\omega}_{T}^{+} -\frac{\partial q_{j}^{+}}{\partial x_{j}^{+}}+\text{Ma}_{\infty}^{2}\left( \gamma_{\infty}-1 \right)\tau_{ij}^{+} \frac{\partial u^{+}_{i}}{\partial x_{j}^{+}} \\ &&+\dot{d}_{\rho h_{s}}^{+}+\dot{m}_{p}^{+} h_{s}^{+} \quad\qquad\qquad\left( {\rho_{\infty} C_{p\infty} T_{\infty} u_{ref}}{x_{ref}^{-1}} \right) \end{array} $$
(26c)
$$ \begin{array}{@{}rcl@{}} \frac{\partial \rho^{+} Y_{\alpha}}{\partial t^{+}} + \frac{\partial \left( \rho^{+} Y_{k} u^{+}_{j}\right) }{\partial x_{j}^{+}}&=& - \frac{\partial {J_{j}^{\alpha +}}}{\partial x_{j}^{+}} +\dot{d}_{\rho Y_{\alpha}}^{+} +\dot{\omega}_{\alpha}^{+}+ \dot{m}_{p}^{+}Y_{\alpha}\quad\quad\left( {\rho_{\infty} u_{ref}}{x_{ref}^{-1}} \right) \end{array} $$
(26d)

In the above equations, variables with superscript (+) are normalized quantities, and the subscript (ref) and \((_{\infty })\) denote either normalization (reference) parameters or values of physical quantities taken at infinity. The quantities that are reported at the end of each line (in brackets) correspond to values that are used to normalize the corresponding equations. A standard normalization procedure for low-Mach conditions is retained:

$$ \begin{array}{@{}rcl@{}} x_{i}&=&x_{ref}x_{i}^{+};\quad u_{i}=u_{ref}u_{i}^{+};\quad t=({x_{ref}}/{u_{ref}}) \hspace*{1.7pt} t^{+}; \end{array} $$
(27a)
$$ \begin{array}{@{}rcl@{}} \rho&=&\rho_{\infty}\rho^{+};\quad \dot{m}_{p}=\rho_{\infty}({u_{ref}}/{x_{ref}}) \hspace*{1.7pt} \dot{m}_{p}^{+};\quad T=T_{\infty}T^{+}; \end{array} $$
(27b)
$$ \begin{array}{@{}rcl@{}} p&=&p_{\infty}p^{+}=\rho_{\infty}({\mathcal{R}T_{\infty}}/{\mathcal{M}_{\infty}}) \hspace*{1.7pt} p^{+};\hspace*{1.7pt}\hspace*{1.7pt} \mathcal{M}=\mathcal{M}_{\infty}\mathcal{M}^{+};\quad h_{s}=C_{p\infty}T_{\infty} h_{s}^{+}; \end{array} $$
(27c)
$$ \begin{array}{@{}rcl@{}} \gamma_{\infty}&=&\frac{C_{p\infty}}{C_{p\infty}-\mathcal{R}/\mathcal{M}_{\infty}};\quad \text{Ma}_{\infty} = \frac{u_{ref}}{\sqrt{\gamma_{\infty}T_{\infty}\mathcal{R}/\mathcal{M}_{\infty}}}; \end{array} $$
(27d)
$$ \begin{array}{@{}rcl@{}} \dot{\omega}_{T}&=&\rho_{\infty} C_{p\infty}T_{\infty} ({u_{ref}}/{x_{ref}}) \hspace*{1.7pt} \dot{\omega}_{T}^{+};\quad \dot{\omega}_{k}=\rho_{\infty} ({u_{ref}}/{x_{ref}}) \hspace*{1.7pt} \dot{\omega}_{k}^{+}; \end{array} $$
(27e)
$$ \begin{array}{@{}rcl@{}} \tau_{ij}&=&\rho_{\infty}C_{p\infty}T_{\infty}\tau_{ij}^{+};\quad q_{j}=\rho_{\infty}C_{p\infty}T_{\infty}u_{ref} q_{j}^{+};\quad J_{j}^{\alpha}=\rho_{\infty}u_{ref}J_{j}^{\alpha\ +}; \end{array} $$
(27f)
$$ \begin{array}{@{}rcl@{}} \dot{d}_{\rho}&=&\rho_{\infty} ({u_{ref}}/{x_{ref}}) \hspace*{1.7pt} \dot{d}_{\rho}^{+};\quad \dot{d}_{\rho u_{i}}=\rho_{\infty} u_{ref} ({u_{ref}}/{x_{ref}}) \hspace*{1.7pt} \dot{d}_{\rho u_{i}}^{+}; \end{array} $$
(27g)
$$ \begin{array}{@{}rcl@{}} \dot{d}_{\rho h_{s}}&=&\rho_{\infty} C_{p\infty}T_{\infty} ({u_{ref}}/{x_{ref}}) \hspace*{1.7pt} \dot{d}_{\rho h_{s}}^{+};\quad \dot{d}_{\rho Y_{\alpha}}=\rho_{\infty} ({u_{ref}}/{x_{ref}}) \hspace*{1.7pt} \dot{d}_{\rho Y_{\alpha}}^{+}\ . \end{array} $$
(27h)

and the normalized EoS can be written as follows

$$ \begin{array}{@{}rcl@{}} p^{+}_{0}&=& \frac{\rho^{+}T^{+}}{\mathcal{M}^{+}}\ ; \end{array} $$
(28a)
$$ \begin{array}{@{}rcl@{}} h_{s}^{+}&=& \frac{1}{C_{p\infty}T_{\infty}}\sum\limits_{\alpha=1}^{N_{sp}}\left( Y_{\alpha} {\int}_{T_{0}}^{T}C_{p,\alpha} (\theta) d\theta \right)\ . \end{array} $$
(28b)

On the one hand, the derivative analysis of Eq. 28b gives

$$ \begin{array}{@{}rcl@{}} dp^{+}_{0}&=&\frac{\rho^{+}}{\mathcal{M}^{+}}dT^{+}+ \rho^{+}T^{+}d \left( \frac{1}{\mathcal{M}^{+}} \right)+ \frac{T^{+}}{\mathcal{M}^{+}}d\rho^{+}\\ &=&\frac{\gamma_{\infty}}{\gamma_{\infty}-1}\left[ \rho^{+}r^{+}dT^{+}+\rho^{+}T^{+}\sum\limits_{\alpha=1}^{N_{sp}}\left( r_{\alpha}^{+} dY_{\alpha} \right) +r^{+}T^{+}d\rho^{+}\right], \end{array} $$
(29)

where

$$ r_{\alpha}^{+}\equiv \frac{1}{C_{p\infty}}\frac{\mathcal{R}}{\mathcal{M}_{\alpha}},\quad r^{+}\equiv \frac{1}{C_{p\infty}}\sum\limits_{\alpha=1}^{N_{sp}}\frac{\mathcal{R}Y_{\alpha}}{\mathcal{M}_{\alpha}}\ . $$

On the other hand, the derivative of the sensible enthalpy definition (i.e., Eq. 28b) reads

$$ {dh_{s}^{+} = C_{p}^{+}dT^{+}+\sum\limits_{\alpha=1}^{N_{sp}}h_{s,\alpha}^{+}dY_{\alpha}}\ , $$
(30)

Using Eq. 30 and considering \({r^{+}}/{C_{p}^{+}}={(\gamma -1)}/{\gamma }\), Eq. 29 becomes

$$ \frac{\gamma_{\infty}-1}{\gamma_{\infty}}\gamma dp^{+}_{0}=\left( \gamma-1 \right)\rho^{+}dh_{s}^{+} +\sum\limits_{\alpha=1}^{N_{sp}}\left[\gamma r_{\alpha}^{+}T^{+}-\left( \gamma-1 \right)h_{s,\alpha}^{+} \right]\rho^{+}dY_{\alpha} +\gamma r^{+}T^{+}d\rho^{+} $$
(31)

from which one may obtain

$$ \frac{\gamma_{\infty}-1}{\gamma_{\infty}}\gamma \frac{dp^{+}_{0}}{dt^{+}}=\left( \gamma-1 \right)\rho^{+}\frac{dh_{s}^{+}}{dt^{+}} +\sum\limits_{\alpha=1}^{N_{sp}}\left[\gamma r_{\alpha}^{+}T^{+}-\left( \gamma-1 \right)h_{s,\alpha}^{+} \right]\rho^{+}\frac{dY_{\alpha}}{dt^{+}}+\gamma r^{+}T^{+}\frac{d\rho^{+}}{dt^{+}}\ , $$
(32)

where \({dh_{s}^{+}}/{dt^{+}}\) must be further expanded using the energy conservation (26d), because it includes a pressure derivative in its RHS. Then, we define \(\rho ^{+} {d\hbar _{s}^{+}}/{dt^{+}} \equiv \dot {\omega }_{T}^{+}-{\partial q^{+}_{j}}/{\partial x_{j}^{+}}+ \text {Ma}_{\infty }^{2}\left (\gamma _{\infty }-1 \right )\tau _{ij}^{+} {\partial u^{+}_{i}}/{\partial x_{j}^{+}} +\dot {d}_{\rho h_{s}}^{+}-\dot {d}_{\rho }^{+} h_{s}^{+}\), where it is noteworthy that the second term, which is associated to the dissipation function, can be neglected within the low Mach number framework.

The governing equation of pressure can be expressed as

$$ \frac{\gamma_{\infty}-1}{\gamma_{\infty}}\frac{dp_{0}}{dt}\hspace*{1.7pt}=\hspace*{1.7pt}\left( \gamma\hspace*{1.7pt}-\hspace*{1.7pt}1\right)\rho \frac{d\hbar_{s}}{dt} \hspace*{1.7pt}+\hspace*{1.7pt}\sum\limits_{\alpha=1}^{N_{sp}} \left[\gamma r_{\alpha} T\hspace*{1.7pt}-\hspace*{1.7pt}\left( \gamma\hspace*{1.7pt}-\hspace*{1.7pt}1 \right) h_{s,\alpha} \right] \rho \frac{dY_{\alpha}}{dt} \hspace*{1.7pt}+\hspace*{1.7pt}\gamma r T \frac{d\rho}{dt} \hspace*{1.7pt} . $$
(33)

For the sake of simplicity, the super/subscript for normalized (+) and leading order (0) are no longer considered in the above expression. It is worth noting that, this equation is valid everywhere in the calculation domain. However, due to the spatial uniformity of the thermodynamic pressure, an averaged form of this equation over a volume \(\mathcal {V}\) is preferred so as to avoid numerical difficulties. Finally, the thermodynamic pressure evolution will be determined from

$$ \frac{dp_{0}}{dt}\hspace*{1.7pt}=\hspace*{1.7pt}\frac{\gamma_{\infty}}{\gamma_{\infty}-1}\frac{1}{\mathcal{V}} {\int}_{\mathcal{V}}\left( \underbrace{\left( \gamma\hspace*{1.7pt}-\hspace*{1.7pt}1 \right)\rho \frac{d\hbar_{s}}{dt} }_{\text{(I)}}\hspace*{1.7pt}+\hspace*{1.7pt}\underbrace{\sum\limits_{\alpha=1}^{N_{sp}}\left[\gamma r_{\alpha} T\hspace*{1.7pt}-\hspace*{1.7pt}\left( \gamma\hspace*{1.7pt}-\hspace*{1.7pt}1 \right)h_{s,\alpha} \right]\rho\frac{dY_{\alpha}}{dt}}_{\text{(II)}} \hspace*{1.7pt}+\hspace*{1.7pt}\underbrace{\gamma rT\left( \dot{m}_{p}\hspace*{1.7pt}+\hspace*{1.7pt}\dot{d}_{\rho}\hspace*{1.7pt}-\hspace*{1.7pt}\rho \frac{\partial u_{j}}{\partial x_{j}} \right) }_{\text{(III)}} \right) d \mathcal{V}\ , $$
(34)

with \(\rho {d\hbar _{s}} \equiv \dot {\omega }_{T}-{\partial q_{j}}/{\partial x_{j}}+\dot {d}_{\rho h_{s}}-\dot {d}_{\rho } h_{s}\).

Appendix B: Evaluation of the Premixedness Index

The premixedness index is evaluated from the generalized definition introduced in reference [66]:

(35)

where denotes the molecular diffusion velocity of species α. The above expression can also be written as follows: \(\xi _{p} = \left (1+ \boldsymbol {n}_{F} \cdot \boldsymbol {n}_{O} \right )/2\) and, since Fickian diffusion has been assumed, the unit vector nk, which gives the diffusion fluxes direction, may be expressed from the species mass fraction isolines: nα = Yα/|Yα|. This allows to relate the premixedness index ξp to the Takeno index GFO = YFYO [67]:

$$ \xi_{p} = \frac{1}{2}\left( 1+ \frac{G_{FO}}{\vert \boldsymbol{\nabla}Y_{F} \vert \cdot \vert \boldsymbol{\nabla}Y_{O} \vert} \right) $$
(36)

In one-dimensional flame structures described with single-step chemistry, the above index is zero in non-premixed conditions while it is unity in premixed conditions [67]. In contrast to the standard definition of reference [67], which was based on single-step chemistry, YF and YO do not presently correspond to the mass fractions of fuel and oxidizer. The definition has been indeed generalized herein by considering the mass fractions of unburnt carbon and oxygen atoms

$$ Y_{F}\equiv \sum\limits_{\alpha}^{\alpha \neq \text{CO}_{2},\mathrm{H}_{2}\mathrm{O}}\frac{\mathcal{M}_{\mathrm{C}}}{\mathcal{M}_{\alpha}}Y_{\alpha}\ ,\ Y_{O}\equiv \sum\limits_{\alpha}^{\alpha \neq \text{CO}_{2},\mathrm{H}_{2}\mathrm{O}}\frac{\mathcal{M}_{\mathrm{O}}}{\mathcal{M}_{\alpha}}Y_{\alpha} $$
(37)

Appendix C: Derivation of Transport Equations of Scalar Alignments

For a scalar field ξ(x, t) the transport equation of which can be written as

$$ \frac{\partial \xi}{\partial t} + \boldsymbol{u}\cdot \boldsymbol{\nabla} \xi = \frac{1}{\rho}\boldsymbol{\nabla} \cdot (\rho D \boldsymbol{\nabla} \xi) + \dot{\omega}_{\xi} $$
(38)

with D the diffusion coefficient of the scalar and \(\dot {\omega }_{\xi }\) the source term, the transport equation for its gradient gξ can be obtained

$$ \frac{D \boldsymbol{g}}{Dt}=-\boldsymbol{S} \boldsymbol{g}-\frac{1}{2}\boldsymbol{g}\times\boldsymbol{\omega}+\boldsymbol{\nabla}(\text{RHS}_{\xi}) $$
(39)

where S is the strain tensor, ω is the vorticity and \(\text {RHS}_{\xi } \equiv \boldsymbol {\nabla }\cdot (\rho D \boldsymbol {\nabla } \xi )/\rho + \dot {\omega }_{\xi }\) denotes the right hand side (RHS) of the transport equation of the scalar. Then, the transport equation for its norm direction vector \(\boldsymbol {n}\equiv {\boldsymbol {g}}/{\left | \boldsymbol {g} \right |}\) can be deduced from Eq. 39

$$ \frac{D \boldsymbol{n}}{Dt}=\frac{1}{\left| \boldsymbol{g} \right|}\boldsymbol{\mathcal{I}}\boldsymbol{\mathcal{N}}\frac{D \boldsymbol{g}}{Dt}=-\boldsymbol{\mathcal{I} \mathcal{N}S}\boldsymbol{n}-\frac{1}{2}\boldsymbol{\mathcal{I}}\boldsymbol{\mathcal{N}}\left( \boldsymbol{n}\times\boldsymbol{\omega} \right)+ \frac{\boldsymbol{\mathcal{I} \mathcal{N}}}{\left| \boldsymbol{g} \right|}\boldsymbol{\nabla}(\text{RHS}_{\xi}) $$
(40)

where the matrix \(\boldsymbol {\mathcal {I}}\boldsymbol {\mathcal {N}}\) is defined as follows

$$ \boldsymbol{\mathcal{I}} \boldsymbol{\mathcal{N}} \equiv \boldsymbol{I}-\boldsymbol{n}\boldsymbol{n}^{T} $$
(41)

with I the identity matrix.

The projection of n in the eigenframe of S can be characterized with the vector

$$ \widehat{\boldsymbol{n}} \equiv \left[ \begin{array}{l} \hat{{n}}_{1}\\ \hat{{n}}_{2}\\ \hat{{n}}_{3} \end{array} \right] = \left[ \begin{array}{l} \boldsymbol{{n}} \cdot \boldsymbol{e}_{1}\\ \boldsymbol{{n}} \cdot \boldsymbol{e}_{2}\\ \boldsymbol{{n}} \cdot \boldsymbol{e}_{3} \end{array} \right] = \boldsymbol{R}^{T} \boldsymbol{{n}} $$
(42)

with R is the eigenmatrix of S

$$ \boldsymbol{R} \equiv [\boldsymbol{e}_{1} |\boldsymbol{e}_{2} | \boldsymbol{e}_{3}] $$
(43)

where ei are the eigenvectors of S corresponding to eigenvalues λi with a descending order, i.e., λ1 > λ2 > λ3. Finally, the transport equation for \(\boldsymbol {\widehat {n}}\) can be achieved

$$ \begin{array}{@{}rcl@{}} \frac{D\widehat{\boldsymbol{n}} }{Dt} &=& \frac{D (\boldsymbol{R}^{T}\boldsymbol{n})}{Dt}=R^{T}\frac{D\boldsymbol{n}}{Dt}+\frac{D R^{T}}{Dt}\boldsymbol{n} \\ &=&-\boldsymbol{R}^{T}\boldsymbol{\mathcal{I} \mathcal{N}S}\boldsymbol{n}-\frac{1}{2}\boldsymbol{R}^{T}\boldsymbol{\mathcal{I}}\boldsymbol{\mathcal{N}}\left( \boldsymbol{n}\times\boldsymbol{\omega} \right)+ \frac{\boldsymbol{R}^{T}\boldsymbol{\mathcal{I}}\boldsymbol{\mathcal{N}}}{\left| \boldsymbol{g} \right|}\boldsymbol{\nabla}(\text{RHS}_{\xi}) +\frac{D \boldsymbol{R}^{T}}{Dt}\boldsymbol{n} \\ &= &\left[\left( \widehat{\boldsymbol{n}}^{T}\boldsymbol{{\Lambda} }\widehat{\boldsymbol{{n}}} \right)\boldsymbol{I} - \boldsymbol{{\Lambda} } \right]\widehat{\boldsymbol{{n}}} -\frac{\boldsymbol{R}^{T}}{2}\left( \boldsymbol{{n}}\times{\boldsymbol{\omega}} \right) + \frac{\left( \boldsymbol{I}- \widehat{\boldsymbol{n}}\widehat{\boldsymbol{n}}^{T}\right)}{\left| \boldsymbol{g} \right|}\boldsymbol{R}^{T}\boldsymbol{\nabla}(\text{RHS}_{\xi}) +\frac{D \boldsymbol{R}^{T}}{Dt}\boldsymbol{n} \end{array} $$
(44)

where Λ is the diagonal matrix based on the eigenvalues of S,

$$ \boldsymbol{\Lambda} \equiv \left[ \begin{array}{lll} \lambda_{1}&&\\ &\lambda_{2}&\\ &&\lambda_{3} \end{array} \right]\ . $$
(45)

Since we have

$$ \boldsymbol{n}=\sum\limits_{j=1}^{3}{\hat{n}}_{j} \boldsymbol{e}_{j}\ , $$
(46)

the last term in Eq. 44 can be expanded as follows

$$ \frac{D \boldsymbol{R}^{T}}{Dt}\boldsymbol{n} = \boldsymbol{\mathcal{W}} \hspace*{1.7pt} \widehat{\boldsymbol{n}} $$
(47)

where the anti-symmetric tensor \(\boldsymbol {\mathcal {W}}\) denotes the rate of rotation of the principal axes

$$ \boldsymbol{\mathcal{W}}_{ij}=\frac{D \boldsymbol{e}_{\boldsymbol{i}}}{Dt}\cdot \boldsymbol{e}_{\boldsymbol{j}}\ . $$
(48)

In fact, this tensor can be evaluated from the transport equation of the strain-rate tensor in eigenframe (D(RTSR)/Dt), it reads

$$ \boldsymbol{\mathcal{W}}_{ij}\hspace*{1.7pt}=\hspace*{1.7pt}\frac{D \boldsymbol{e}_{\boldsymbol{i}}}{Dt}\cdot \boldsymbol{e}_{\boldsymbol{j}}\hspace*{1.7pt}=\hspace*{1.7pt}\frac{1-\delta_{ij}}{\lambda_{i}-\lambda_{j}}\left( \!-\frac{1}{4}\hat{\omega}_{i}\hat{\omega}_{j}\hspace*{1.7pt}+\hspace*{1.7pt}\frac{1}{2}\left[\boldsymbol{R}^{T} \left( \boldsymbol{\nabla} \left( \frac{D \boldsymbol{u}}{D t} \right)\hspace*{1.7pt}+\hspace*{1.7pt}\left( \!\boldsymbol{\nabla} \!\left( \frac{D \boldsymbol{u}}{D t}\right) \right)^{T} \right) \boldsymbol{R} \right]_{ji} \right) $$
(49)

where δij is the Kronecker delta tensor and the substantial derivative of the velocity is given by

$$ \frac{D\boldsymbol{u}}{Dt} = \frac{1}{\rho}\left( -\boldsymbol{\nabla} p +\boldsymbol{\nabla} \cdot \tau+ \boldsymbol{f}\right)\ . $$
(50)

In summary, the transport equation for the projection of n in the eigenframe of the strain-tensor reads:

$$ \begin{array}{@{}rcl@{}} \frac{D\hat{n}_{1}}{Dt} &=& \left( \sum\limits_{j=1}^{3}\lambda_{j} \hat{n}_{j}^{2}-\lambda_{1}\right)\hat{n}_{1}+{\mathbf{T}\mathbf{W}}_{1} +\tilde{n}_{2}\boldsymbol{\mathcal{W}}_{12} + \hat{n}_{3}\boldsymbol{\mathcal{W}}_{13}+({\mathbf{G}\mathbf{R}})_{1} \end{array} $$
(51a)
$$ \begin{array}{@{}rcl@{}} \frac{D\hat{n}_{2}}{Dt} &=& \left( \sum\limits_{j=1}^{3}\lambda_{j} \hat{n}_{j}^{2}-\lambda_{2}\right)\hat{n}_{2}+{\mathbf{T}\mathbf{W}}_{2} +\hat{n}_{1}\boldsymbol{\mathcal{W}}_{21} + \hat{n}_{3}\boldsymbol{\mathcal{W}}_{23}+({\mathbf{G}\mathbf{R}})_{2} \end{array} $$
(51b)
$$ \begin{array}{@{}rcl@{}} \frac{D\hat{n}_{3}}{Dt} &=& \left( \sum\limits_{j=1}^{3}\lambda_{j} \hat{n}_{j}^{2}-\lambda_{3}\right)\hat{n}_{3}+{\mathbf{T}\mathbf{W}}_{3} +\hat{n}_{1}\boldsymbol{\mathcal{W}}_{31} + \hat{n}_{2}\boldsymbol{\mathcal{W}}_{32}+({\mathbf{G}\mathbf{R}})_{3} \end{array} $$
(51c)

where the vector TW and GR are defined as

$$ {\mathbf{T}\mathbf{W}}\equiv -\frac{\boldsymbol{R}^{T}}{2}\left( \boldsymbol{n}\times\boldsymbol{\omega} \right)\ , \quad {\mathbf{G}\mathbf{R}}\equiv \frac{\left( \boldsymbol{I}- \widehat{\boldsymbol{{n}}}\widehat{\boldsymbol{{n}}}^{T}\right)}{\left| \boldsymbol{g} \right|}\boldsymbol{R}^{T}\boldsymbol{\nabla}(\text{RHS}_{\xi})\ . $$
(52)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Bouali, Z. & Mura, A. Computational Investigation of Weakly Turbulent Flame Kernel Growths in Iso-Octane Droplet Clouds in CVC Conditions. Flow Turbulence Combust 104, 139–177 (2020). https://doi.org/10.1007/s10494-019-00051-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-019-00051-x

Keywords

Navigation