Skip to main content
Log in

Investigation of Reactive Scalar Mixing in Transported PDF Simulations of Turbulent Premixed Methane-Air Bunsen Flames

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Transported probability density function (TPDF) simulations have been performed in conjunction with DNS data to investigate the mixing characteristics of reactive scalars in two turbulent lean premixed methane-air Bunsen flames with Case A being close to the corrugated flamelet regime and Case C being close to the broken reaction zones regime. The study shows that with an accurate mixing timescale of progress variable being provided, TPDF simulations using the EMST mixing model predict scalar mixing and flame characteristics reasonably well. Modeling reactive scalar mixing rate remains one key challenge. For turbulent flames close to the flamelet regime, i.e. Case A, the turbulent flame structure represented by the scatter of OH, as well as the resemblance of the flame induced dissipation rate to the actual dissipation rate, highlights the necessity to account for flame structure when modeling reactive scalar mixing in flamelet region. A posteriori tests show that the hybrid mixing timescale model, which accounts for both turbulence and flame structure effects on the scalar mixing timescale, yields better performance than the constant mechanical-to-scalar timescale model for turbulent premixed flames close to the flamelet regime. Moreover, the hybrid model shows potential for modeling differential mixing rates of intermediate species featuring their own characteristic timescales. The effects of progress variable definition and turbulence modeling on the computed flame characteristics are investigated, and the significance of turbulence modeling in RANS-TPDF simulation is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Bradley, T., Fadok, J.: Advanced hydrogen turbine development update. ASME Turbo Expo 2009: Power for Land, Sea, and Air. Orlando, Florida, USA (2009)

  2. York, W.D., Ziminsky, W.S., Yilmaz, E.: Development and testing of a low NOx hydrogen combustion system for heavy-duty gas turbines. J. Eng. Gas Turbines Power. 135(1–8), 022001 (2013)

    Article  Google Scholar 

  3. Yuri, M., Masada, J., Tsukagoshi, K., Ito, E., Hada, S.: Development of 1600 C-class high-efficiency gas turbine for power generation applying J-type technology. Mitsubishi heavy Ind. Technol. Rev. 50, 1–10 (2013)

    Google Scholar 

  4. Pope, S.B.: PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119–192 (1985)

    Article  Google Scholar 

  5. Haworth, D.: Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36, 168–259 (2010)

    Article  Google Scholar 

  6. Pope, S.B.: Small scales, many species and the manifold challenges of turbulent combustion. Proc. Combust. Inst. 34, 1–31 (2013)

    Article  Google Scholar 

  7. Celis, C., da Silva, L.F.F.: Lagrangian mixing models for turbulent combustion: review and prospects. Flow. Turbul. Combust. 94, 643–689 (2015)

    Article  Google Scholar 

  8. Tang, Q., Xu, J., Pope, S.B.: Probability density function calculations of local extinction and NO production in piloted-jet turbulent methane/air flames. Proc. Combust. Inst. 28, 133–139 (2000)

    Article  Google Scholar 

  9. Xu, J., Pope, S.B.: PDF calculations of turbulent nonpremixed flames with local extinction. Combust. Flame. 123, 281–307 (2000)

    Article  Google Scholar 

  10. Muradoglu, M., Liu, K., Pope, S.B.: PDF modeling of a bluff-body stabilized turbulent flame. Combust. Flame. 132, 115–137 (2003)

  11. Ren, Z., Pope, S.B.: An investigation of the performance of turbulent mixing models. Combust. Flame. 136, 208–216 (2004)

    Article  Google Scholar 

  12. Gordon, R.L., Masri, A.R., Pope, S.B., Goldin, G.M.: A numerical study of auto-ignition in turbulent lifted flames issuing into a vitiated co-flow. Combust. Theor. Model. 11, 351–376 (2007)

    Article  MATH  Google Scholar 

  13. Wang, H., Pope, S.B.: Large eddy simulation/probability density function modeling of a turbulent CH4/H2/N2 jet flame. Proc. Combust. Inst. 33, 1319–1330 (2011)

    Article  Google Scholar 

  14. Yang, Y., Wang, H., Pope, S.B., Chen, J.H.: Large-eddy simulation/probability density function modeling of a non-premixed CO/H2 temporally evolving jet flame. Proc. Combust. Inst. 34, 1241–1249 (2013)

    Article  Google Scholar 

  15. Lindstedt, R., Vaos, E.: Transported PDF modeling of high-Reynolds-number premixed turbulent flames. Combust. Flame. 145, 495–511 (2006)

    Article  Google Scholar 

  16. Stöllinger, M., Heinz, S.: Evaluation of scalar mixing and time scale models in PDF simulations of a turbulent premixed flame. Combust. Flame. 157, 1671–1685 (2010)

    Article  Google Scholar 

  17. Rowinski, D.H., Pope, S.B.: Computational study of lean premixed turbulent flames using RANS-PDF and LES-PDF methods. Combust. Theor. Model. 17, 610–656 (2013)

    Article  Google Scholar 

  18. Tirunagari, R.R., Pope, S.B.: An investigation of turbulent premixed counterflow flames using large-eddy simulations and probability density function methods. Combust. Flame. 166, 229–242 (2016)

    Article  Google Scholar 

  19. Bray, K.N.C.: Turbulent flows with premixed reactants. Top. Appl. Phys. 44, 115–183 (1980)

    Article  Google Scholar 

  20. Anand, M., Pope, S.B.: Calculations of premixed turbulent flames by PDF methods. Combust. Flame. 67, 127–142 (1987)

  21. Bray, K., Champion, M., Libby, P.A., Swaminathan, N.: Scalar dissipation and mean reaction rates in premixed turbulent combustion. Combust. Flame. 158, 2017–2022 (2011)

    Article  Google Scholar 

  22. Villermaux, J., Devillon, J.C.: Représentation de la coalescence et de la redispersion des domaines de ségrégation dans un fluide par un modele d'interaction phénoménologique. Proceedings of the 2nd International Symposium on Chemical Reaction Engineering. New York (1972)

  23. Dopazo, C., O'Brien, E.E.: An approach to the autoignition of a turbulent mixture. Acta Astronautica. 1, 1239–1266 (1974)

    Article  MATH  Google Scholar 

  24. Curl, R.L.: Dispersed phase mixing: I. theory and effects in simple reactors. AICHE J. 9, 175–181 (1963)

    Article  Google Scholar 

  25. Janicka, J., Kolbe, W., Kollmann, W.: Closure of the transport equation for the probability density Funcfion of turbulent scalar fields. J. Non-equil. Thermody. 4, 47–66 (1979)

    Article  MATH  Google Scholar 

  26. Subramaniam, S., Pope, S.B.: A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees. Combust. Flame. 115, 487–514 (1998)

    Article  Google Scholar 

  27. Ren, Z., Subramaniam, S., Pope, S.B.: Implementation of the EMST Mixing Model. Available from: https://tcg.mae.cornell.edu/emst/

  28. Valiño, L., Dopazo, C.: A binomial Langevin model for turbulent mixing. Phys. Fluids. 3, 3034–3037 (1991)

    Article  MATH  Google Scholar 

  29. Pope, S.B.: A model for turbulent mixing based on shadow-position conditioning. Phys. Fluids. 25, 110803 (2013)

    Article  Google Scholar 

  30. Fox, R.O.: The Fokker–Planck closure for turbulent molecular mixing: passive scalars. Phys. Fluids A. 4, 1230–1244 (1992)

    Article  MATH  Google Scholar 

  31. Meyer, D.W., Jenny, P.: A mixing model for turbulent flows based on parameterized scalar profiles. Phys. Fluids. 18, 035105 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rowinski, D.H., Pope, S.B.: PDF calculations of piloted premixed jet flames. Combust. Theor. Model. 15, 245–266 (2011)

    Article  MATH  Google Scholar 

  33. Zhou, H., Li, S., Ren, Z., Rowinski, D.H.: Investigation of mixing model performance in transported PDF calculations of turbulent lean premixed jet flames through Lagrangian statistics and sensitivity analysis. Combust. Flame. 181, 136–148 (2017)

    Article  Google Scholar 

  34. Kuron, M., Hawkes, E.R., Ren, Z., Tang, J.C.K., Zhou, H., Chen, J.H., Lu, T.: Performance of transported PDF mixing models in a turbulent premixed flame. Proc. Combust. Inst. 36, 1987–1995 (2017)

    Article  Google Scholar 

  35. Hawkes, E.R., Chatakonda, O., Kolla, H., Kerstein, A.R., Chen, J.H.: A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence. Combust. Flame. 159, 2690–2703 (2012)

    Article  Google Scholar 

  36. Swaminathan, N., Bray, K.: Effect of dilatation on scalar dissipation in turbulent premixed flames. Combust. Flame. 143, 549–565 (2005)

    Article  Google Scholar 

  37. Kolla, H., Rogerson, J., Chakraborty, N., Swaminathan, N.: Scalar dissipation rate modeling and its validation. Combust. Sci. Technol. 181, 518–535 (2009)

    Article  Google Scholar 

  38. Mantel, T., Borghi, R.: A new model of premixed wrinkled flame propagation based on a scalar dissipation equation. Combust. Flame. 96, 443–457 (1994)

    Article  Google Scholar 

  39. Kuan, T., Lindstedt, R., Vaos, E.: Higher moment based modeling of turbulence enhanced explosion kernels in confined fuel-air mixtures. Moscow (2003)

  40. Lindstedt, R.P., Milosavljevic, V.D., Persson, M.: Turbulent burning velocity predictions using transported PDF methods. Proc. Combust. Inst. 33, 1277–1284 (2011)

    Article  Google Scholar 

  41. Kuron, M., Ren, Z., Hawkes, E.R., Zhou, H., Kolla, H., Chen, J.H., Lu, T.: A mixing timescale model for TPDF simulations of turbulent premixed flames. Combust. Flame. 177, 171–183 (2017)

    Article  Google Scholar 

  42. Mura, A., Robin, V., Champion, M.: Modeling of scalar dissipation in partially premixed turbulent flames. Combust. Flame. 149, 217–224 (2007)

    Article  Google Scholar 

  43. Sankaran, R., Hawkes, E.R., Chen, J.H., Lu, T., Law, C.K.: Structure of a spatially developing turbulent lean methane–air Bunsen flame. Proc. Combust. Inst. 31, 1291–1298 (2007)

    Article  Google Scholar 

  44. Chen, J.H., Choudhary, A., Supinski, B.D., DeVries, M., Hawkes, E.R., Klasky, S., Liao, W.K., Ma, K.L., Mellor-Crummey, J., Podhorszki, N., Sankaran, R., Shende, S., Yoo, C.S.: Terascale direct numerical simulations of turbulent combustion using S3D. Comput. Sci. Discov. 2, 1–31 (2009)

    Article  Google Scholar 

  45. Sankaran, R., Hawkes, E.R., Yoo, C.S., Chen, J.H.: Response of flame thickness and propagation speed under intense turbulence in spatially developing lean premixed methane–air jet flames. Combust. Flame. 162, 3294–3306 (2015)

    Article  Google Scholar 

  46. Merci, B., Roekaerts, D., Naud, B., Pope, S.B.: Comparative study of micromixing models in transported scalar PDF simulations of turbulent nonpremixed bluff body flames. Combust. Flame. 146, 109–130 (2006)

    Article  Google Scholar 

  47. Dunn, M.J., Masri, A.R., Bilger, R.W., Barlow, R.S.: Finite rate chemistry effects in highly sheared turbulent premixed flames. Flow. Turbul. Combust. 85, 621–648 (2010)

    Article  MATH  Google Scholar 

  48. Pope, S.B.: Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theor. Model. 1, 41–63 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  49. Lu, L., Pope, S.B.: An improved algorithm for in situ adaptive tabulation. J. Comput. Phys. 228, 361–386 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Richardson, E.S., Sankaran, R., Grout, R.W., Chen, J.H.: Numerical analysis of reaction–diffusion effects on species mixing rates in turbulent premixed methane–air combustion. Combust. Flame. 157, 506–515 (2010)

    Article  Google Scholar 

  51. Richardson, E.S., Chen, J.H.: Application of PDF mixing models to premixed flames with differential diffusion. Combust. Flame. 159, 2398–2414 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The work at Tsinghua is supported by National Natural Science Foundation of China 91841302 and 51476087. Simulations are performed with the computational resources of the Tsinghua National Laboratory for Information Science and Technology. The work at Sandia is supported by the Division of Chemical Sciences, Geosciences and Biosciences, the Office of Basic Energy Sciences, the US Department of Energy (DOE). Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuyin Ren.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Appendix: Convergence studies with respect to grid resolution, ISAT error tolerance and the number of particles per cell

Appendix: Convergence studies with respect to grid resolution, ISAT error tolerance and the number of particles per cell

Figure 22 shows the RANS-TPDF simulations of Case A from two set of grids. The base grid resolution is 144×48 in streamwise (x) and spanwise (y) direction, while the fine grid resolution is 720×90. Note that the full 3D DNS simulation has 720×400×180 grids in streamwise, crosswise and spanwise direction, respectively. The RANS-TPDF simulation exploits the statistical homogeneity along the crosswise direction and the symmetry at y = 0. Therefore, the fine grid essentially has the same grid resolution with DNS on x-y plane. As shown, the simulation with the fine grid yields almost the same mean and rms radial profiles as the base case at all the plotted locations. As far as the computational cost is concerned, the RANS-TPDF simulation with 30 computational particles per cell takes around 300 CPU hours on the base grid and around 4000 CPU hours on the find grid.

Fig. 22
figure 22

Spanwise profiles of mean axial velocity \( \overset{\sim }{U} \), mean progress variable \( \overset{\sim }{c} \), its rms \( \sqrt{\overset{\sim }{c{"}^2}} \), and mean mass fractions \( {\overset{\sim }{Y}}_{CO} \) and \( {\overset{\sim }{Y}}_{OH} \) for Case A. Dashed red: base grid (144×48); Dot-dashed blue: fine grid (720×90); Solid black: DNS

Numerical tests on the effect of ISAT error tolerance on the predictions have been carried out with error tolerances of 10−3, 10−4 and 5 × 10−5, respectively. Figure 23 shows that the differences from the different error tolerances are negligible for the prediction of the mean and rms quantities.

Fig. 23
figure 23

Spanwise profiles of mean axial velocity \( \overset{\sim }{U} \), mean progress variable \( \overset{\sim }{c} \), its rms \( \sqrt{\overset{\sim }{c{"}^2}} \), and mean mass fractions \( {\overset{\sim }{Y}}_{CO} \) and \( {\overset{\sim }{Y}}_{OH} \) for Case A. Dashed red: ISAT error tolerance 10−3; Dot-dashed blue: ISAT error tolerance 10−4; Dotted black: ISAT error tolerance 5 × 10−5

Convergence tests on the number of particles per cell (Npc) have been carried out with Npc=30 and 80, respectively. Figure 24 shows that differences between Npc=30 and 80 are negligible for the prediction of the mean and rms quantities.

Fig. 24
figure 24

Spanwise profiles of mean axial velocity \( \overset{\sim }{U} \), mean progress variable \( \overset{\sim }{c} \), its rms \( \sqrt{\overset{\sim }{c{"}^2}} \), and mean mass fractions \( {\overset{\sim }{Y}}_{CO} \) and \( {\overset{\sim }{Y}}_{OH} \) for Case A. Dashed red: Npc=30; Dot-dashed blue: Npc=80

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Ren, Z., Kuron, M. et al. Investigation of Reactive Scalar Mixing in Transported PDF Simulations of Turbulent Premixed Methane-Air Bunsen Flames. Flow Turbulence Combust 103, 667–697 (2019). https://doi.org/10.1007/s10494-019-00041-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-019-00041-z

Keywords

Navigation