Skip to main content
Log in

Evolution of Flame Curvature in Turbulent Premixed Bunsen Flames at Different Pressure Levels

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The physical mechanisms underlying the curvature evolution in turbulent premixed Bunsen flames at different thermodynamic pressures are investigated using a three-dimensional Direct Numerical Simulation database. It is found that, due to the occurrence of the Darrieus-Landau instability, the high-pressure flame exhibits higher probability of developing large negative curvature values and saddle concave topologies than the low pressure cases. The terms in the curvature transport equation due to normal strain rate gradients and curl of vorticity arising from both turbulent flow and flame normal propagation play pivotal roles in the curvature evolution. The mean value of the net contribution of the flame propagation terms dominates over the net contributions arising from the background fluid motion. The net contribution of the source/sink terms tries to reduce the convexity of the flame surface in the positively curved locations. By contrast, the net contribution of the source/sink terms promotes concavity of the flame surface towards the reactants in the negatively curved regions and this effect is particularly strong for the high pressure flame, where the effects of the Darrieus-Landau instability are prominent. This also gives rise to large negative skewness of the probability density functions of curvature in the high-pressure flame with the Darrieus-Landau instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dopazo, C., Martin, J., Hierro, J.: Local geometry of isoscalar surfaces. J. Phys. Rev. E. 76, 056316 (2007)

    Article  Google Scholar 

  2. Cant, R.S., Rutland, C.J., Trouvé, A.: Statistics for laminar flamelet modelling. Proc. Summer Prog. 1990, Center for Turbulence Research, Stanford. 271–279 (1990)

  3. Poinsot, T. and Veynante, D.: Theoretical and Numerical Combustion, R.T.Edwards Inc., Philadelphia, USA (2001)

  4. Pelcé, P.: (Ed.), Dynamics of curved fronts, Academic Press Inc. (1988)

  5. Markstein, G.H.: Experimental and theoretical studies of flame-front stability. J. Aero. Sci. 18, 199–209 (1951)

    Article  Google Scholar 

  6. Clavin, P., Joulin, G.: Premixed flames in large scale and high intensity turbulent flows. J. Phys. Lett. 44, L–1-L-12 (1983)

    Article  Google Scholar 

  7. Mikolaitis, D.W.: The interaction of flame curvature and stretch, part 1: the concave premixed flame. Combust. Flame. 57, 25–31 (1984)

    Article  Google Scholar 

  8. Mikolaitis, D.W.: The interaction of flame curvature and stretch, part 2: the convex premixed flame. Combust. Flame. 58, 23–29 (1984)

    Article  Google Scholar 

  9. Echekki, T., Chen, J.H.: Unsteady strain rate and curvature effects in turbulent premixed methane-air flames. Combust. Flame. 106, 184–202 (1996)

    Article  Google Scholar 

  10. Renou, B., Boukhalfa, A., Peuchberty, D., Trinité, M.: Effects of stretch on the local structure of freely propagating premixed low-turbulent flames with various Lewis numbers. Proc. Combust. Inst. 29, 841–847 (1998)

    Article  Google Scholar 

  11. Peters, N., Terhoeven, P., Chen, J.H., Echekki, T.: Statistics of flame displacement speeds from computations of 2-D unsteady methane-air flames. Proc. Combust. Inst. 27, 833–839 (1998)

    Article  Google Scholar 

  12. Echekki, T., Chen, J.H.: Analysis of the contributions of curvature to premixed flame propagation. Combust. Flame. 118, 308–311 (1999)

    Article  Google Scholar 

  13. Chen, J.H., Im, H.G.: Correlation of flame speed with stretch in turbulent premixed methane/air flames. Proc. Combust. Inst., Pittsburgh. 27, 819–826 (1998)

    Article  Google Scholar 

  14. Chen, J.H., Im, H.G.: Stretch effects on the burning velocity of turbulent premixed hydrogen/air flames. Proc. Combust. Inst. 28, 211–218 (2000)

    Article  Google Scholar 

  15. Hawkes, E.R., Chen, J.H.: Direct numerical simulation of hydrogen-enriched lean premixed methane air flames. Combust. Flame. 138, 242–258 (2004)

    Article  Google Scholar 

  16. Hawkes, E.R., Chen, J.H.: Evaluation of models for flame stretch due to curvature in the thin reaction zones regime. Proc. Combust. Inst. 30, 647–655 (2005)

    Article  Google Scholar 

  17. Chakraborty, N., Cant, S.: Unsteady effects of strain rate and curvature on turbulent premixed flames in inlet-outlet configuration. Combust. Flame. 137, 129–147 (2004)

    Article  Google Scholar 

  18. Chakraborty, N., Cant, R.S.: Influence of Lewis number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime, Phys. Fluids. 17, 105105 (2005)

    Article  MATH  Google Scholar 

  19. Chakraborty, N., Cant, R.S.: Effects of strain rate and curvature on surface density function transport in turbulent premixed flames in the thin reaction zones regime. Phys. Fluids. 17(65108), (2005)

  20. Jenkins, K.W., Klein, M., Chakraborty, N., Cant, R.S.: Effects of strain rate and curvature on the propagation of a spherical flame kernel in the thin reaction zones regime. Combust. Flame. 145, 415–434 (2006)

    Article  Google Scholar 

  21. Klein, M., Chakraborty, N., Jenkins, K.W., Cant, R.S.: Effects of initial radius on the propagation of spherical premixed flame kernels in turbulent environment. Phys. Fluids. 18, 055102 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Savarianandam, V.R., Lawn, C.J.: Burning velocity of premixed turbulent flames in the weakly wrinkled regime. Combust Flame. 146, 1–18 (2006)

    Article  Google Scholar 

  23. Chakraborty, N.: Comparison of displacement speed statistics of turbulent premixed flames in the regimes representing combustion in corrugated flamelets and thin reaction zones. Phys. Fluids. 19, 105109 (2007)

    Article  MATH  Google Scholar 

  24. Chakraborty, N., Hawkes, E.R., Chen, J.H., Cant, R.S.: Effects of strain rate and curvature on surface density function transport in turbulent premixed CH4-air and H2-air flames: a comparative study. Combust. Flame. 154, 259–280 (2008)

    Article  Google Scholar 

  25. Han, I., Huh, K.Y.: Roles of displacement speed on evolution of flame surface density for different turbulent intensities and Lewis numbers in turbulent premixed combustion. Combust. Flame. 152, 194–205 (2008)

    Article  Google Scholar 

  26. Hartung, G., Hult, J., Balachandran, R., Mackley, M.R., Kaminski, C.F.: Flame front tracking in turbulent lean premixed flames. Applied Physics B. 96, 843–862 (2009)

    Article  Google Scholar 

  27. Chakraborty, N., Klein, M., Cant, R.S.: Effects of turbulent Reynolds number on the displacement speed statistics in the thin reaction zones regime turbulent premixed combustion. J. Combust. 473679 (2011)

  28. Chakraborty, N., Hartung, G., Katragadda, M., Kaminski, C.F.: A numerical comparison of 2D and 3D density-weighted displacement speed statistics and implications for laser based measurements of flame displacement speed. Combust. Flame. 158, 1372–1390 (2011)

    Article  Google Scholar 

  29. Kerl, J., Lawn, C., Beyrau, F.: Three-dimensional flame displacement speed and flame front curvature measurements using quad-plane PIV. Combust. Flame. 160, 2757–2769 (2013)

    Article  Google Scholar 

  30. Giannakopoulos, G.K., Matalon, M., Frouzakis, C.E., Tamboulides, A.G.: The curvature Markstein length and the definition of flame displacement speed for stationary spherical flames. Proc. Combust. Inst. 35, 737–743 (2015)

    Article  Google Scholar 

  31. Chakraborty, N., Klein, M.: Influence of Lewis number on the surface density function transport in the thin reaction zones regime for turbulent premixed flames. Phys. Fluids. 20, 065102 (2008)

    Article  MATH  Google Scholar 

  32. Chakraborty, N., Klein, M.: Effects of global flame curvature on surface density function transport in turbulent premixed flame kernels in the thin reaction zone regime. Proc. Combust. Inst. 32, 1435–1443 (2009)

    Article  Google Scholar 

  33. Sandeep, A., Proch, F., Kempf, A.M., Chakraborty, N.: Statistics of strain rates and surface density function in a flame-resolved high-fidelity simulation of a turbulent premixed bluff body burner. Phys. Fluids. 30, 065101 (2018)

    Article  Google Scholar 

  34. Klein, M., Alwazzan, D., Chakraborty, N.: A direct numerical simulation analysis of pressure variation in turbulent premixed Bunsen burner flames-part 1: scalar gradient and strain rate statistics. Comput. Fluids. 173, 178–188 (2018). https://doi.org/10.1016/j.compfluid.2018.03.010

    Article  MathSciNet  MATH  Google Scholar 

  35. Klein, M., Alwazzan, D., Chakraborty, N.: A direct numerical simulation analysis of pressure variation in turbulent premixed Bunsen burner flames-part 2: surface density function transport statistics. Comput. Fluids. 173, 147–156 (2018). https://doi.org/10.1016/j.compfluid.2018.03.013

    Article  MathSciNet  MATH  Google Scholar 

  36. Haworth, D.C., Poinsot, T.J.: Numerical simulations of Lewis number effects in turbulent premixed flames. J. Fluid Mech. 244, 405–436 (1992)

    Article  Google Scholar 

  37. Rutland, C., Trouvé, A.: Direct simulations of premixed turbulent flames with nonunity Lewis numbers. Combust. Flame. 94, 41–57 (1993)

    Article  Google Scholar 

  38. Creta, F., Lamioni, R., Lapenna, P.E., Troiani, G.: Interplay of Darrieus-Landau instability and weak turbulence in premixed flame propagation. Phys. Review E. 94, 053102 (2016)

    Article  MathSciNet  Google Scholar 

  39. Klein, M., Nachtigal, H., Hansinger, M., Pfitzner, M., Chakraborty, N.: Flame curvature distribution in high pressure turbulent Bunsen premixed flames. Flow Turbul. Combust. (2018). https://doi.org/10.1007/s10494-018-9951-1

  40. Pope, S.B.: The evolution of surfaces in turbulence. Int. J. Eng. Sci. 26, 445–469 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  41. Dopazo, C., Martin, J., Cifuentes, L., Hierro, J.: Strain, rotation and curvature of non-material propagating iso-scalar surfaces in homogeneous turbulence. Flow Turb. Combust. 101, 1–32 (2018). https://doi.org/10.1007/s10494-017-9888-9

    Article  Google Scholar 

  42. Cifuentes, L., Dopazo, C., Karichedu, A., Chakraborty, N., Kempf, A.M.: Analysis of flame curvature evolution in a turbulent premixed bluff body burner. Phys. Fluids. 30, 095101 (2018)

    Article  Google Scholar 

  43. Turns, S.R.: An Introduction to Combustion: Concepts and Applications, 3rd edn. McGraw Hill (2001)

  44. Peters, N.: Turbulent Combustion, Cambridge Monograph on Mechanics. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  45. Dopazo, C., Cifuentes, L., Martin, J., Jimenez, C.: Strain rates normal to approaching isoscalar surfaces in a turbulent premixed flame. Combust. Flame. 162, 1729–1736 (2015)

    Article  Google Scholar 

  46. Jenkins, K.W., Cant, R.S.: DNS of turbulent flame kernels, In C. Liu, L. Sakell and T. Beautner (Eds.), Proc. 2nd AFOSR Conf. On DNS and LES, Kluwer Academic Publishers, 192–202 (1999)

  47. Chakraborty, N., Kolla, H., Sankaran, R., Hawkes, E.R., Chen, J.H., Swaminathan, N.: Determination of three-dimensional quantities related to scalar dissipation rate and its transport from two-dimensional measurements: direct numerical simulation based validation. Proc. Combust. Inst. 34, 1151–1162 (2013)

    Article  Google Scholar 

  48. Dopazo, C., Cifuentes, L., Chakraborty, N.: Vorticity budgets in premixed combusting turbulent flows at different Lewis numbers. Phys. Fluids. 29, 045106 (2017)

    Article  Google Scholar 

  49. Lipatnikov, A.N., Nishiki, S., Hasegawa, T.: A direct numerical study of vorticity transformation in weakly turbulent premixed flames. Phys. Fluids. 26, 105104 (2014)

    Article  Google Scholar 

  50. Gao, Y., Chakraborty, N., Klein, M.: Assessment of sub-grid scalar flux modelling in premixed flames for large Eddy simulations: A-priori direct numerical simulation. Eur. J. Mech. Fluids-B. 52, 97–108 (2015)

    Article  MATH  Google Scholar 

  51. Papapostolou, V., Wacks, D.H., Klein, M., Chakraborty, N., Im, H.G.: Enstrophy transport conditional on local flow topologies in different regimes of premixed turbulent combustion. Sci. Rep. 7, 11545 (2017)

    Article  Google Scholar 

  52. Klein, M., Kasten, C., Chakraborty, N., Mukhadiyev, N., Im, H.G.: Turbulent scalar fluxes in Ηydrogen-air premixed flames at low and high Karlovitz numbers. Combust. Theory Model. 22, 1033–1048 (2018)

    Article  MathSciNet  Google Scholar 

  53. Gao, Y., Chakraborty, N.: Modelling of Lewis number dependence of scalar dissipation rate transport for large Eddy simulations of turbulent premixed combustion. Numer. Heat Trans. A. 69, 1201–1222 (2016)

    Article  Google Scholar 

  54. Lai, J., Chakraborty, N.: Effects of Lewis number on head on quenching of turbulent premixed flame: a direct numerical simulation analysis. Flow Turbul. Combust. 96, 279–308 (2016)

    Article  Google Scholar 

  55. Gao, Y., Minamoto, Y., Tanahashi, M., Chakraborty, N.: A priori assessment of scalar dissipation rate closure for large Eddy simulations of turbulent premixed combustion using a detailed chemistry direct numerical simulation database. Combust. Sci. Technol. 188, 1398–1423 (2016)

    Article  Google Scholar 

  56. Lai, J., Klein, M., Chakraborty, N.: Direct numerical simulation of head-on quenching of statistically planar turbulent premixed methane-air flames using a detailed chemical mechanism. Flow Turbul. Combust. 101, 1073–1091 (2018)

    Article  Google Scholar 

  57. Savard, A., Lapointe, S., Teodorczyk, A.: Numerical investigation of the effect of pressure on heat release rate in iso-octane premixed turbulent flames under conditions relevant to SI engines. Proc. Combust. Inst. 36, 3543–3549 (2017)

    Article  Google Scholar 

  58. Poinsot, T., Lele, S.K.: Boundary conditions for direct simulation of compressible viscous flows. J. Comp. Phys. 101, 104–129 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  59. Kobayashi, H., Kawabata, Y., Maruta, K.: Experimental study on general correlation of turbulent burning velocity at high pressure. Proc. Combust. Inst. 27, 941–948 (1998)

    Article  Google Scholar 

  60. Chakraborty, N., Cant, R.S.: A-priori analysis of the curvature and propagation terms of the flame surface density transport equation for large Eddy simulation. Phys. Fluids. 19, 105101 (2007)

    Article  MATH  Google Scholar 

  61. Chakraborty, N., Cant, R.S.: Direct numerical simulation analysis of the flame surface density transport equation in the context of large Eddy simulation. Proc. Combust. Inst. 32, 1445–1453 (2009)

    Article  Google Scholar 

  62. Gao, Y., Chakraborty, N., Swaminathan, N.: Local strain rate and curvature dependences of scalar dissipation rate transport in turbulent premixed flames: a direct numerical simulation analysis, J. Combust., 2014, 280671 (2014), 29

  63. Gao, Y., Chakraborty, N., Swaminathan, N.: Scalar dissipation rate transport and its modelling for large Eddy simulations of turbulent premixed combustion. Combust. Sci. Technol. 187(3), 362–383 (2015)

    Article  Google Scholar 

Download references

Funding

The authors are grateful to EPSRC, UK (EP/R029369/1, EP/P022286/1), the German Research Foundation (DFG, KL1456/5–1) ARCHER, Rocket HPC and Gauss Centre for Supercomputing (grant: pn69ga) for the financial and computational supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Klein.

Ethics declarations

Ethics Statement

This work did not involve any active collection of human data.

Competing Interests Statement

We have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alqallaf, A., Klein, M., Dopazo, C. et al. Evolution of Flame Curvature in Turbulent Premixed Bunsen Flames at Different Pressure Levels. Flow Turbulence Combust 103, 439–463 (2019). https://doi.org/10.1007/s10494-019-00027-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-019-00027-x

Keywords

Navigation