Skip to main content
Log in

Experimental Investigation of the Flame Front Propagation Characteristic During Light-round Ignition in an Annular Combustor

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The light-round process in a transparent annular combustor which comprises 16 swirling injectors injecting lean premixed propane/air mixtures is experimentally investigated. This annular combustor is derived from the ‘MICCA’ combustor, pioneered by EM2C laboratory (Bourgouin et al., Combust. Flame 160(8), 1398, 2013).The annular chamber is formed by two transparent concentric quartz tubes, which provides optical access to high-speed imaging to diagnose the chemiluminescence of flame fronts. Two ignition modes (i.e. two extreme conditions in scheduling fuel delivery and igniter sparking), controlled by ignition procedure are investigated, thus the FFSL (Fuel First, Spark Later) and the SFFL (Spark First, Fuel Later) modes. These two ignition modes exhibit different patterns of injector-to-injector flame propagation during the light-round process. The light-around time and mean circumferential flame propagation speed are obtained for various conditions. The influence of thermal expansion, velocity fluctuation and convection to the light-round process is investigated and compared for two ignition modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Bourgouin, J.F., Durox, D., Schuller, T., Beaunier, J., Candel, S.: Ignition dynamics of an annular combustor equipped with multiple swirling injectors. Combust. Flame 160(8), 1398 (2013)

    Article  Google Scholar 

  2. Lefebvre, A.H.: Gas Turbine Combustion: Alternative Fuels and Emissions. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  3. Boileau, M., Staffelbach, G., Cuenot, B., Poinsot, T., Bérat, C.: LES of an ignition sequence in a gas turbine engine. Combust. Flame 154(1–2), 2 (2008)

    Article  Google Scholar 

  4. Zhou, M., Li, G., Zhang, Z., Liang, J., Tian, L.: Effect of ignition energy on the initial propagation of ethanol/air laminar premixed flames: an experimental study. Energy Fuels 31(9), 10021 (2017)

    Article  Google Scholar 

  5. Starikovskiy, A., Aleksandrov, N.: Plasma-assisted ignition and combustion. Prog. Energy Combust. Sci. 39(1), 61 (2013)

    Article  Google Scholar 

  6. Bradley, D., Sheppard, C.G.W., Suardjaja, I.M., Woolley, R.: Fundamentals of high-energy spark ignition with lasers. Combust. Flame 138(1), 55 (2004)

    Article  Google Scholar 

  7. Tagalian, J., Heywood, J.B.: Flame initiation in a spark-ignition engine. Combust. Flame 64(2), 243 (1986)

    Article  Google Scholar 

  8. Kelley, A.P., Jomaas, G., Law, C.K.: Critical radius for sustained propagation of spark-ignited spherical flames. Combust. Flame 156(5), 1006 (2009)

    Article  Google Scholar 

  9. Chen, Z., Burke, M.P., Ju, Y.: On the critical flame radius and minimum ignition energy for spherical flame initiation. Proc. Combust. Inst. 33(1), 1219 (2013)

    Article  Google Scholar 

  10. Baum, M., Poinsot, T.: Effects of mean flow on premixed flame ignition. Combust. Sci. Technol. 106(1-3), 19 (2007)

    Article  Google Scholar 

  11. Sloane, T.M.: Numerical simulation of electric spark ignition in methane-air mixtures at pressures above one atmosphere. Combust. Sci. Technol. 86(1-6), 121 (1992)

    Article  Google Scholar 

  12. Ju, Y.: Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame. Combust. Theor. Model. 11(3), 427 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, G., Boileau, M., Veynante, D., Truffin, K.: Large eddy simulation of a growing turbulent premixed flame kernel using a dynamic flame surface density model. Combust. Flame 159(8), 2742 (2012)

    Article  Google Scholar 

  14. Razus, D., Brinzea, V., Mitu, M., Movileanu, C., Oancea, D.: Burning velocity of propane-air mixtures from pressure-time records during explosions in a closed spherical vessel. Energy Fuels 26(2), 901 (2012)

    Article  Google Scholar 

  15. Renou, B., Boukhalfa, A., Puechberty, D., Trinité, M.: Local scalar flame properties of freely propagating premixed turbulent flames at various Lewis numbers. Combust. Flame 123(4), 507 (2000)

    Article  Google Scholar 

  16. Cordier, M., Vandel, A., Cabot, G., Renou, B., Boukhalfa, A.M.: Laser-Induced Spark Ignition of Premixed Confined Swirled Flames. Combust. Sci. Technol. 185(3), 379 (2013)

    Article  Google Scholar 

  17. Ahmed, S.F., Balachandran, R., Marchione, T., Mastorakos, E.: Spark ignition of turbulent nonpremixed bluff-body flames. Combust. Flame 151(1–2), 366 (2007)

    Article  Google Scholar 

  18. Marchione, T., Ahmed, S., Mastorakos, E.: Ignition of turbulent swirling n-heptane spray flames using single and multiple sparks. Combust. Flame 156(1), 166 (2009)

    Article  Google Scholar 

  19. Andreas, L., Renaud, L., Fabrice, G.: Statistical evaluation of ignition phenomena in turbojet engines. In: ASME Turbo Expo 2010: Power for Land, Sea, and Air, Glasgow, UK (2010)

  20. Eyssartier, A., Cuenot, B., Gicquel, L.Y., Poinsot, T.: Using LES to predict ignition sequences and ignition probability of turbulent two-phase flames. Combust. Flame 160(7), 1191 (2013)

    Article  Google Scholar 

  21. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. RT Edwards, Inc., Philadelphia (2005)

    Google Scholar 

  22. Linassier, G., Viguier, C., Verdier, H., Lecourt, R., Linassier, G., Lavergne, G.: Experimental investigations of the ignition performances on a multi-sector combustor under high altitude conditions. In: AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, AIAA2012-0934 (2012)

  23. Neophytou, A., Cuenot, B., Duchaine, P.: Large-eddy simulation of ignition and flame propagation in a trisector combustor. J. Propul. Power. 32(2), 345 (2015)

    Article  Google Scholar 

  24. Cordier, M., Vandel, A., Renou, B., Cabot, G., Boukhalfa, M.A., Esclapez, L., Barré, D., Riber, E., Cuenot, B., Gicquel, L.: Experimental and numerical analysis of an ignition sequence in a multiple-injectors burner. In: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, San Antonio, Texas (2013)

  25. Barré, D., Esclapez, L., Cordier, M., Riber, E., Cuenot, B., Staffelbach, G., Renou, B., Vandel, A., Gicquel, L.Y., Cabot, G.: Flame propagation in aeronautical swirled multi-burners: experimental and numerical investigation. Combust. Flame 161(9), 2387 (2014)

    Article  Google Scholar 

  26. Gicquel, L.Y., Staffelbach, G., Poinsot, T.: Large Eddy Simulations of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci. 38(6), 782 (2012)

    Article  Google Scholar 

  27. Philip, M., Boileau, M., Vicquelin, R., Schmitt, T., Durox, D., Bourgouin, J.F., Candel, S.: Ignition sequence of an annular multi-injector combustor. Phy. Fluids 26(9), 091106 (2014)

    Article  Google Scholar 

  28. Philip, M., Boileau, M., Vicquelin, R., Riber, E., Schmitt, T., Cuenot, B., Durox, D., Candel, S.: Large Eddy Simulations of the ignition sequence of an annular multiple-injector combustor. Proc. Combust. Inst. 35(3), 3159 (2015)

    Article  Google Scholar 

  29. Philip, M., Boileau, M., Vicquelin, R., Schmitt, T., Durox, D., Bourgouin, J.F., Candel, S.: Simulation of the ignition process in an annular multiple-injector combustor and comparison with experiments. J. Eng. Gas Turbines Power 137(3), 031501 (2015)

    Article  Google Scholar 

  30. Bach, E., Kariuki, J., Dawson, J., Mastorakos, E., Bauer, H.: Spark ignition of single bluff-body premixed flames and annular combustors. In: 51St AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine, Texas (2013)

  31. Machover, E., Mastorakos, E.: Spark ignition of annular non-premixed combustors. Exp. Therm. Fluid Sci. 73, 64 (2016)

    Article  Google Scholar 

  32. Machover, E., Mastorakos, E.: Numerical investigation of the stochastic behavior of light-round in annular non-premixed combustors. Combust. Sci. Technol. 189(9), 1467 (2017)

    Article  Google Scholar 

  33. Machover, E., Mastorakos, E.: Experimental investigation on spark ignition of annular premixed combustors. Combust. Flame 178, 148 (2017)

    Article  Google Scholar 

  34. Prieur, K., Durox, D., Beaunier, J., Schuller, T., Candel, S.: Ignition dynamics in an annular combustor for liquid spray and premixed gaseous injection. Proc. Combust. Inst. 36(3), 3717 (2017)

    Article  Google Scholar 

  35. Lancien, T., Prieur, K., Durox, D., Candel, S., Vicquelin, R.: Large-Eddy Simulation of light-round in an annular combustor with liquid spray injection and comparison with experiments. In: ASME Turbo Expo 2017, Charlotte, NC (2017)

  36. Linke-diesinger, A.: Systems of Commercial Turbofan Engines: An Introduction to Systems Functions. Springer Science & Business Media, Berlin (2008)

    Google Scholar 

  37. Klinger, H., Bake, S., Vogt, H.F., Knieschke, D., Schober, P.: Altitude testing of the E3E core engine. In: ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, pp. 223–232. ASME (2011)

  38. Denton, M.J., Tambe, S.B., Jeng, S.M.: Experimental investigation into the high altitude relight of a three-cup combustor sector. In: ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, p. V04BT04A055. ASMEp (2018)

  39. Candel, S., Durox, D., Schuller, T., Bourgouin, J.F., Moeck, J.P.: Dynamics of swirling flames. Annu. Rev. Fluid Mech. 46, 147 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lewis, B., Von Elbe, G.: Combustion, Flames and Explosions of Gases. Harcourt Brace Jovanovich, London (1987)

    Google Scholar 

  41. Durox, D., Prieur, K., Schuller, T., Candel, S.: Different flame patterns linked with swirling injector interactions in an annular combustor. J. Eng. Gas Turbines Power 138(10), 101504 (2016)

    Article  Google Scholar 

  42. Vagelopoulos, C., Egolfopoulos, F., Law, C.: Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique. In: Symposium (international) on combustion, vol. 25, pp. 1341–1347. Elsevier (1994)

  43. Lipatnikov, A.N., Chomiak, J.: Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations. Prog. Energy Combust. Sci. 28(1), 1 (2002)

    Article  Google Scholar 

  44. Driscoll, J.F.: Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities. Prog. Energy Combust. Sci 34(1), 91 (2008)

    Article  Google Scholar 

  45. Glassman, I., Yetter, R.A., Glumac, N.G.: Combustion. Academic Press, Cambridge (2014)

    Google Scholar 

Download references

Acknowledgements

The authors are very thankful for the fruitful discussions and highlight comments from Prof. Sébastien Candel, Prof. Daniel Durox, and Dr. Kevin Prieur of the Lab EM2C; And the authors gratefully acknowledge the financial support received from the National Natural Science Foundation of China, under Grant No. 91541108 and No. 91841302, the Fundamental Research Funds for the Central Universities, under Grant No. 2017FZA4032.

Funding

The study was funded by the National Natural Science Foundation of China, under Grant No. 91541108 and No. 91841302, and the Fundamental Research Funds for the Central Universities, under Grant No. 2017FZA4032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaofeng Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Linghu, C., Zheng, Y. et al. Experimental Investigation of the Flame Front Propagation Characteristic During Light-round Ignition in an Annular Combustor. Flow Turbulence Combust 103, 247–269 (2019). https://doi.org/10.1007/s10494-019-00018-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-019-00018-y

Keywords

Navigation