Skip to main content
Log in

Wall Oscillation Induced Drag Reduction Zone in a Turbulent Boundary Layer

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Spanwise oscillation applied on the wall under a turbulent boundary layer flow is investigated using direct numerical simulation. The temporal wall-forcing produces a considerable drag reduction (DR) over the region where oscillation occurs. Three simulations with identical oscillation parameters have been performed at different Reynolds numbers with one of them replicating the experiment by Ricco and Wu (Exp. Therm. Fluid Sci. 29, 41–52, 2004). The downstream development of DR in the numerical simulation and experiment is nearly identical. The velocity profiles and the indicator function are investigated with respect to the variation in DR and Reynolds number. The DR affects the slope of the logarithmic part of the velocity profile in accordance with previous theoretical findings. Low speed streaks are visualized and the bending of longitudinal vortices related to the drag reduction phenomenon is discussed. In addition, the visualization is compared with the corresponding results from the experiments. The spatial transient of the DR before reaching its maximum value is analyzed and is found to vary linearly with the oscillation period. An analysis of the energy budget is presented and the fundamental differences compared to the streamwise homogeneous channel flow are elucidated. While the power budget improves with increasing Reynolds number, it is shown that the net power remains negative for the wall forcing parameters considered here, even under ideal conditions. On the other hand, the analysis together with channel and boundary layer flow data in the literature provides an estimation of net energy saving for boundary layer flows which depends on the streamwise extent of the oscillating zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Karniadakis, G.E., Choi, K.S.: Mechanisms on transverse motions in turbulent wall flows. Annu. Rev. Fluid Mech. 35, 45–62 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Jung, W.J., Mangiavacchi, N., Akhavan, R.: Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A 4(8), 1605–1607 (1992)

    Article  Google Scholar 

  3. Baron, A., Quadrio, M.: Turbulent drag reduction by spanwise wall oscillations. Appl. Sci. Res. 55, 311–326 (1996)

    Article  MATH  Google Scholar 

  4. Choi, J.I., Xu, C.X., Sung, H.J.: Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows. AIAA J. 40(5), 842–850 (2002)

    Article  Google Scholar 

  5. Quadrio, M., Ricco, P.: Initial response of a turbulent channel flow to spanwise oscillation of the walls. J. Turbul. 4, 7 (2003)

    Article  Google Scholar 

  6. Quadrio, M., Ricco, P.: Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech. 521, 251–271 (2004)

    Article  MATH  Google Scholar 

  7. Touber, E., Leschziner, M.A.: Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms. J. Fluid Mech. 693, 150–200 (2012)

    Article  MATH  Google Scholar 

  8. Yakeno, A., Hasegawa, Y., Kasagi, N.: Modification of quasi-streamwise vortical structure in a drag-reduced turbulent channel flow with spanwise wall oscillation. Phys. Fluids 26(085109) (2014)

  9. Xu, C.X., Huang, W.X.: Transient response of reynolds stress transport to spanwise wall oscillation in a turbulent channel flow. Phys. Fluids 17(1), 018101 (2005)

    Article  MATH  Google Scholar 

  10. Ricco, P., Quadrio, M.: Wall-oscillation conditions for drag reduction in turbulent channel flow. Int. J. Heat Fluid Flow 29(4), 601–612 (2008)

    Article  Google Scholar 

  11. Ricco, P., Ottonelli, C., Hasegawa, Y., Quadrio, M.: Changes in turbulent dissipation in a channel flow with oscillating walls. J. Fluid Mech. 700, 77–104 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Agostini, L., Touber, E., Leschziner, M.A.: Spanwise oscillatory wall motion in channel flow: drag-reduction mechanisms inferred from DNS-predicted phase-wise property variations at R e τ = 1000. J. Fluid Mech. 743, 606–635 (2014)

    Article  Google Scholar 

  13. Agostini, L., Touber, E., Leschziner, M.A.: The turbulence vorticity as a window to the physics of friction-drag reduction by oscillatory wall motion. Int. J. Heat Fluid Flow 51, 3–15 (2015)

    Article  Google Scholar 

  14. Laadhari, F., Skandaji, L., Morel, R.: Turbulence reduction in a boundary layer by a local spanwise oscillating surface. Phys. Fluids 6, 3218–3220 (1994)

    Article  Google Scholar 

  15. Choi, K.S.: Near-wall structure of turbulent boundary layer with spanwise-wall oscillation. Phys. Fluids 14, 2530–2542 (2002)

    Article  MATH  Google Scholar 

  16. Ricco, P.: Modification of near-wall turbulence due to spanwise wall oscillations. J. Turbul. 5(024) (2004)

  17. Choi, K.S., DeBisschop, J.R., Clayton, B.R.: Turbulent boundary-layer control by means of spanwise wall oscillation. AIAA J. 36(7), 1157–1163 (1998)

    Article  Google Scholar 

  18. Ricco, P., Wu, S.: On the effects of lateral wall oscillations on a turbulent boundary layer. Exp. Therm. Fluid Sci. 29, 41–52 (2004)

    Article  Google Scholar 

  19. Skote, M.: Temporal and spatial transients in turbulent boundary layer flow over an oscillating wall. Int. J. Heat Fluid Flow 38, 1–12 (2012)

    Article  Google Scholar 

  20. Yudhistira, I., Skote, M.: Direct numerical simulation of a turbulent boundary layer over an oscillating wall. J. Turbul. 12(9), 1–17 (2011)

    MathSciNet  Google Scholar 

  21. Mishra, M., Skote, M.: Drag reduction in turbulent boundary layers with half wave wall oscillations. Math. Probl. Eng. 2015, 253249 (2015)

    MATH  Google Scholar 

  22. Skote, M.: Turbulent boundary layer flow subject to streamwise oscillation of spanwise wall-velocity. Phys. Fluids 23(8), 081703 (2011)

    Article  Google Scholar 

  23. Skote, M.: Comparison between spatial and temporal wall oscillations in turbulent boundary layer flows. J. Fluid Mech. 730, 273–294 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Skote, M., Mishra, M., Wu, Y.: Drag reduction of a turbulent boundary layer over an oscillating wall and its variation with Reynolds number. Int. J. Aerospace Eng. 2015 (891037) (2015)

  25. Lardeau, S., Leschziner, M.A.: The streamwise drag-reduction response of a boundary layer subjected to a sudden imposition of transverse oscillatory wall motion. Phys. Fluids 25(7), 075109 (2013)

    Article  Google Scholar 

  26. Skote, M.: Scaling of the velocity profile in strongly drag reduced turbulent flows over an oscillating wall. Int. J. Heat Fluid Flow 50, 352–358 (2014)

    Article  Google Scholar 

  27. Gatti, D., Quadrio, M.: Performance losses of drag-reducing spanwise forcing at moderate values of the reynolds number. Phys. Fluids 25(12), 125109 (2013)

    Article  Google Scholar 

  28. Gatti, D., Quadrio, M.: Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing. J. Fluid Mech. 802, 553–582 (2016)

    Article  MathSciNet  Google Scholar 

  29. Hurst, E., Yang, Q., Chung, Y.M.: The effect of reynolds number on turbulent drag reduction by streamwise travelling waves. J. Fluid Mech. 759, 28–55 (2014)

    Article  MathSciNet  Google Scholar 

  30. Chevalier, M., Schlatter, P., Lundbladh, A., Henningson, D.S.: Simson—a pseudo-spectral solver for incompressible boundary layer flows. Technical report, TRITA-MEK 2007:07, KTH Mechanics, Stockholm, Sweden (2007)

  31. Schlatter, P., Örlü, R.: Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116–126 (2010)

    Article  MATH  Google Scholar 

  32. Smits, A., Matheson, N., Joubert, P.: Low-reynolds-number turbulent boundary layers in zero and favorable pressure gradients. J. Ship Res. 27, 147–157 (1983)

    Google Scholar 

  33. Nagib, H., Chauhan, K., Monkewitz, P.: Approach to an asymptotic state for zero pressure gradient turbulent boundary layers. Phil. Trans. R. Soc. A 365, 755–770 (2007)

    Article  MATH  Google Scholar 

  34. Trujillo, S.M., Bogard, D.G., Ball, K.S.: Turbulent boundary layer drag reduction using an oscillating wall. In: AIAA Paper 97-1870, 28th AIAA Fluid Dynamics Conference, pp. 1–10. 4th AIAA Shear Flow Control Conference (1997)

  35. Skote, M., Mishra, M., Negi, P.S., Wu, Y., Lee, H.M., Schlatter, P.: Wall oscillation induced drag reduction of turbulent boundary layers. In: Peinke, J., et al. (eds.) Progress in Turbulence VI, pp. 161–165. Springer International Publishing (2016)

  36. Xia, Q.J., Huang, W.X., Xu, C.X., Cui, G.X.: Direct numerical simulation of spatially developing turbulent boundary layers with opposition control. Fluid Dyn. Res. 47(2), 025503 (2015)

    Article  Google Scholar 

  37. Stroh, A., Hasegawa, Y., Schlatter, P., Frohnapfel, B.: Global effect of local skin friction drag reduction in spatially developing turbulent boundary layer. J. Fluid Mech. 805, 303–321 (2016)

    Article  MathSciNet  Google Scholar 

  38. Eitel-Amor, G., Örlü, R., Schlatter, P.: Simulation and validation of a spatially evolving turbulent boundary layer up to R e 𝜃 = 8300. Int. J. Heat Fluid Flow 47, 57–69 (2014)

    Article  Google Scholar 

  39. Mishra, M.K.: Numerical studies of turbulent flows. Ph.D. thesis, Nanyang Technological University (2015)

  40. Bandyopadhyay, P.: Stokes mechanism of drag reduction. J. Appl. Mech. Trans. ASME 73(3), 483–489 (2006)

    Article  MATH  Google Scholar 

  41. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967)

  42. Zeng, Y., Weinbaum, S.: Stokes problems for moving half-planes. J. Fluid Mech. 287, 59–74 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  43. Hicks, P.D., Ricco, P.: Laminar streak growth above a spanwise oscillating wall. J. Fluid Mech. 768, 348–374 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Choi, K.S., Graham, M.: Drag reduction of turbulent pipe flows by circular-wall oscillation. Phys. Fluids 10(1), 7–9 (1998)

    Article  Google Scholar 

  45. Quadrio, M., Sibilla, S.: Numerical simulation of turbulent flow in a pipe oscillating around its axis. J. Fluid Mech. 424(-1), 217–241 (2000)

    Article  MATH  Google Scholar 

  46. Quadrio, M., Ricco, P.: The laminar generalized Stokes layer and turbulent drag reduction. J. Fluid Mech. 667, 135–157 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pope, S.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

Download references

Funding

This study was funded by Singapore MOE Tier-2 grant (grant number MOE2012-T2-1-030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Skote.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skote, M., Mishra, M. & Wu, Y. Wall Oscillation Induced Drag Reduction Zone in a Turbulent Boundary Layer. Flow Turbulence Combust 102, 641–666 (2019). https://doi.org/10.1007/s10494-018-9979-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-018-9979-2

Keywords

Navigation