Skip to main content
Log in

Least Squares Minimization Closure Models for LES of Turbulent Combustion

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This work summarizes the development and testing of a new family of chemical closure models for large-eddy simulation (LES) of turbulent combustion using finite-rate chemistry. The goal of this research is to provide a simple, yet effective model that provides a correction to the ‘laminar chemistry’ prediction formed by evaluating chemical production terms using filtered-mean data. The general model takes the form \(\overline {\dot {{\omega }}_{s} (q)} =f(\overline {{q}},{\Delta } ,{\ldots } )\dot {{\omega }}_{s} (\overline {{q}})\), where the enhancement factor, f, accounts for the effects of the subgrid fluctuations on apparent reactivity as expressed at a given mesh level. A form for the enhancement factor is derived by least-squares minimization (LSM) of a ‘reactivity functional’ connecting information at different mesh levels. A modified a priori analysis, in which simultaneous large-eddy simulations are performed on fine and coarse mesh levels, is used to identify candidate modeled forms for the enhancement factor. In the modified a priori analysis, coarse-mesh realizations are constrained by the filtered fine-mesh velocity, allowing eddy structures to be highly correlated. Several LSM variants are described and tested through comparisons with experimental data. The test cases include three experiments conducted at the University of Virginia’s supersonic combustion facility involving non-premixed hydrogen and partially-premixed ethylene combustion as well as a premixed propane-air flame in the Volvo Validation Rig. The results demonstrate the capability of the models to provide a consistent (if modest in some cases) improvement in predictive capability, relative to ‘laminar chemistry’, in a cost-effective manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Pierce, C.D.: Progress variable approach for large-eddy simulation of turbulent combustion. PhD. Dissertation, Mechanical Engineering, Stanford University (2001)

  2. Ihme, M., Pitsch, H.: Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model. Combust. Flame 155, 70–89 (2008)

    Article  MATH  Google Scholar 

  3. Larsson, J.: Large eddy simulation of the HyShot II scramjet combustor using a supersonic flamelet model. AIAA Paper 2012-4261 (2012)

  4. Pope, S.B.: Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theor. Model. 1, 41–63 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gou, X., Sun, W., Chen, Z., Ju, Y.: A dynamic multi-timescale method for combustion modeling with detailed and reduced chemical kinetic mechanisms. Combust. Flame 157, 1111–1121 (2010)

    Article  Google Scholar 

  6. Candler, G.V., Subbareddy, P.K., Nompelis, I.: Decoupled implicit method for aerothermodynamics and reacting flows. AIAA J. 51, 1245–1254 (2013)

    Article  Google Scholar 

  7. Savard, B., Xuan, Y., Bobbitt, B., Blanquart, G.: A computationally-efficient, semi-implicit, iterative method for the time-integration of reacting flows with stiff chemistry. J. Comp. Phys. 295, 740–769 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jaberi, F.A., Colucci, P.J., James, S., Givi, P., Pope, S.B.: Filtered mass density function for large-eddy simulation of turbulent reacting flows. J. Fluid Mech. 401, 85–121 (1999)

    Article  MATH  Google Scholar 

  9. Valino, L.: A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow. Flow Turbul. Combust. 60, 157–172 (1998)

    Article  MATH  Google Scholar 

  10. Dodoulas, A., Navarro-Martinez, S.: Large-eddy simulation of premixed turbulent flames using the probability density function approach. Flow Turbul. Combust. 90, 654–678 (2013)

    Article  Google Scholar 

  11. Koo, H., Donde, P., Raman, V.: A quadrature-based LES/transported probability density function approach for modeling supersonic combustion. Proc. Combust. Inst. 33, 2203–2210 (2011)

    Article  Google Scholar 

  12. Menon, S., McMurtry, P.A., Kerstein, A.R.: A linear eddy subgrid model for turbulent combustion - Application to premixed combustion. AIAA Paper 1993-0107 (1993)

  13. Echekki, T., Kerstein, A.R., Dreeben, T.D.: One dimensional turbulence simulation of turbulent jet diffusion flames: model formulation and illustrative applications. Combust. Flame 125, 1083–1105 (2001)

    Article  Google Scholar 

  14. Menon, S., Kerstein, A.: The linear-eddy model. In: Turbulent Combustion Modeling, pp 221–247. Springer, Berlin (2011)

  15. Ranjan, R., Murilidharan, B., Nagaoka, Y., Menon, S.: Subgrid-scale modeling of reaction-diffusion and scalar transport in turbulent premixed flames. Combust. Sci. Technol. 188, 1496–1537 (2015)

    Article  Google Scholar 

  16. Berglund, M., Fedina, E., Fureby, C., Tegner, J.: Finite rate chemistry large-eddy simulation of self-ignition in a supersonic combustion ramjet. AIAA J. 48, 540–550 (2010)

    Article  Google Scholar 

  17. Sabelnkov, V., Fureby, C.: Extended LES-PASR model for simulation of turbulent combustion. Prog. Propuls. Phys. 4, 539–568 (2013)

    Article  Google Scholar 

  18. Fedina, E., Fureby, C., Bulat, G., Meier, W.: Assessment of finite-rate chemistry large-eddy simulation combustion models. Flow Turbul. Combust. https://doi.org/10.1007/s10494-017-9823-0

  19. Potturi, A., Edwards, J.: Investigation of subgrid closure models for finite-rate scramjet combustion. AIAA Paper 2013-2461 (2013)

  20. Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12, 1843–1863 (2000)

    Article  MATH  Google Scholar 

  21. Legier, J., Poinsot, T., Veynante, D.: Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion. In: Proceedings of the Summer Program, Center for Turbulence Research, pp 157–168 (2000)

  22. Charlette, F., Meneveau, C., Veynante, D.: A power-law flame-wrinkling model for LES of premixed turbulent combustion Part I: non-dynamic formulation and initial tests. Combust. Flame 131, 159–180 (2002)

    Article  Google Scholar 

  23. Charlette, F., Meneveau, C., Veynante, D.: A power-law flame-wrinkling model for LES of premixed turbulent combustion Part II: dynamic formulation. Combust. Flame 131, 181–197 (2002)

    Article  Google Scholar 

  24. Genin, F., Menon, S.: Simulation of turbulent mixing behind a strut injector in supersonic flow. AIAA J. 48, 526–539 (2010)

    Article  Google Scholar 

  25. Edwards, J., Boles, J., Baurle, R.: Large-eddy/Reynolds-averaged Navier-Stokes simulation of a supersonic reacting wall jet. Combust. Flame 159, 1127–1138 (2012)

    Article  Google Scholar 

  26. Potturi, A., Edwards, J.: Large-eddy Reynolds-averaged Navier-Stokes simulation of cavity-stabilized ethylene combustion. Combust. Flame 162, 1176–1192 (2015)

    Article  Google Scholar 

  27. Fulton, J., Edwards, J., Hassan, H., McDaniel, J., Goyne, C., Rockwell, R., Cutler, A., Johansen, C., Danehy, P.: Large-eddy/Reynolds-averaged Navier-Stokes simulations of reactive flows in a dual-mode scramjet combustor. J. Prop. Power 30, 558–575 (2014)

    Article  Google Scholar 

  28. Fulton, J., Edwards, J., Cutler, A., McDaniel, J., Goyne, C.: Turbulence/chemistry interactions in a ramp-stabilized hydrogen-air diffusion flame. Combust. Flame 174, 152–165 (2016)

    Article  Google Scholar 

  29. Patton, C., Wignall, T., Mirgolbabaei, H., Edwards, J.R., Echekki, T.: LES model assessment for high speed combustion using mesh sequenced realizations. AIAA Paper 2015-4207 (2015)

  30. Patton, C.H., Wignall, T.J., Edwards, J.R., Echekki, T.: LES model assessment for high-speed combustion. AIAA Paper 2016-1937 (2016)

  31. Patton, C.: Turbulent combustion closure modeling for high speed LES. Ph.D. Dissertation, North Carolina State University. https://repository.lib.ncsu.edu/handle/1840.20/33495 (2017)

  32. Gieseking, D., Choi, J., Edwards, J., Hassan, H.: Compressible flow simulations using a new large-eddy simulation/Reynolds-averaged Navier-Stokes model. AIAA J. 49, 2194–2209 (2011)

    Article  Google Scholar 

  33. Lenormand, E., Sagaut, P., Ta Phuoc, L., Compte, P.: Subgrid-scale models for large-eddy simulations of compressible wall-bounded flows. AIAA J. 38, 1340–1350 (2000)

    Article  Google Scholar 

  34. Menter, F.: Two equation eddy viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)

    Article  Google Scholar 

  35. Edwards, J.: A low-diffusion flux-splitting scheme for Navier-Stokes calculations. Comput. Fluids 26, 635–659 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  37. Colella, P., Woodward, P.: Piecewise parabolic method for gas-dynamical simulations. J. Comput. Phys. 5, 174–201 (1984)

    Article  MATH  Google Scholar 

  38. Ducros, F., Ferrand, V., Nicaud, F., Weber, C., Darracq, D., Gachareiu, C., Poinsot, T.: Large-eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152, 517–549 (1999)

    Article  MATH  Google Scholar 

  39. Burke, M., Chaos, M., Ju, Y., Dryer, F., Klippenstein, S.: Comprehensive H2/O2 kinetic model for high-pressure combustion. In. J. Chem. Kinet. 44, 444–474 (2011)

    Article  Google Scholar 

  40. DesJardin, P., Frankel, S.: Large eddy simulation of a nonpremixed reacting jet: application and assessment of subgrid-scale combustion models. Phys. Fluids 10, 2298–2314 (1998)

    Article  Google Scholar 

  41. Buxton, O., Ganapathisubramani, B.: PIV measurements of convection velocities in a turbulent mixing layer. J. Phys. Conf. Ser. 318, 052038 (2011)

    Article  Google Scholar 

  42. Spina, E., Donovan, J., Smits, A.: On the structure of high Reynolds-number supersonic turbulent boundary layers. J. Fluid Mech. 222, 293–327 (1991)

    Article  Google Scholar 

  43. Ringuette, M., Wu, M., Martin, M.: Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3. J. Fluid Mech. 594, 59–69 (2008)

    Article  MATH  Google Scholar 

  44. Rockwell, R., Goyne, C., Rice, B., Tatman, B., Smith, C., Kouchi, T., McDaniel, J., Fulton, J., Edwards, J.: Collaborative experimental and computational study of a dual mode scramjet combustor. J. Prop. Power 30, 530–538 (2014)

    Article  Google Scholar 

  45. Cutler, A., Magnotti, G., Cantu, L., Gallo, E., Rockwell, R., Goyne, C.: Dual-pump coherent anti-Stokes Raman apectroscopy measurements in a dual-mode scramjet. J. Prop. Power 30, 539–549 (2014)

    Article  Google Scholar 

  46. Schultz, I., Goldstein, C., Jeffries, C., Hanson, R., Rockwell, R., Goyne, C.: Spatially resolved water measurements in a scramjet combustor using diode laser absorption. J. Prop. Power 30, 1551–1558 (2014)

    Article  Google Scholar 

  47. Cutler, A., Magnotti, G., Cantu, L, Gallo, P., Danehy, P., Rockwell, R., Goyne, C., McDaniel, J.: Dual-pump CARS measurements in the University of Virginia’s dual-mode scramjet Configuration “C”. AIAA Paper 2013-0335 (2013)

  48. Luo, Z., Yoo, C., Richardson, E., Chen, J., Law, C., Lu, T.: Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow. Combust. Flame 159, 265–274 (2012)

    Article  Google Scholar 

  49. Schultz, I., Goldstein, C., Jeffries, J., Spearrin, R., Hanson, R.: Multispecies mid-infrared absorption measurements in a hydrocarbon-fueled scramjet combustor. J. Prop. Power 30, 1595–1604 (2014)

    Article  Google Scholar 

  50. Sjunnesson, A., Olovsson, S., Sjoblow, B.: Validation rig—a tool for flame studies. International Society for Air-breathing Engines Conference, ISABE-91-7038. Nottingham (1991)

  51. Sjunnesson, A., Nelsson, C., Max, E.: LDA measurements of velocities and turbulence in a bluff body stabilized flame. In: Fourth International Conference on Laser Anemometry - Advances and Applications. ASME, Cleveland (1991)

  52. Model Validation for Propulsion Workshop: https://community.apan.org/wg/afrlcg/mvpws/p/mvp1-announcement

  53. Potturi, A., Patton, C., Edwards, J.: Application of data-driven SGS turbulent combustion models to the Volvo experiment. AIAA Paper 2017-1792 (2017)

  54. Ghani, A., Poinsot, T., Gicquel, L., Staffelback, G.: LES of longitudinal and transverse self-excited combustion instabilities in a bluff-body stabilized turbulent premixed flame. Combust. Flame 162, 4075–4083 (2015)

    Article  Google Scholar 

  55. Edwards, J.: Towards unified CFD simulations of real fluid flows. AIAA Paper 2001-2524 (2001)

  56. Weiss, J., Smith, W.: Preconditioning applied to variable and constant density flows. AIAA J. 33, 2050–2057 (1995)

    Article  MATH  Google Scholar 

  57. Normal, M., Semazzi, F., Nair, R.: Conservative cascade interpolation on the sphere: an intercomparison of various non-oscillatory reconstructions. Q. J. R. Meteorol. Soc. 135, 795–805 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by AFOSR under FA9550-13-1-0049, monitored by Dr. Chiping Li, and by AFRL under FA8650-16-P-270, awarded to Metacomp Technologies. The authors also acknowledge Drs. Amarnatha Potturi (Metacomp Technologies) and Dr. Tarek Echekki (North Carolina State University) for their contributions to this work. Computer time was obtained from NCSU’s High Performance Computing unit and from the DoD’s High Performance Computing Modernization Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack R. Edwards.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this Appendix, analyses similar to those shown in Fig. 3 are repeated for the ‘positive’ chemical source terms (those acting to produce a particular species). Referring back to Eqs. 4 and 5, the ‘positive’ source terms can be calculated as

$$ \dot{{\omega }}_{s}^{+} =M_{w,s} \sum\limits_{i = 1}^{NR} {\left( {{v}^{\prime\prime}_{s,i} k_{f,i} \prod\limits_{j = 1}^{NS} {(\hat{{\rho }}_{j} )^{{v}^{\prime}_{j} }+} {v}^{\prime}_{s,i} k_{b,i} \prod\limits_{j = 1}^{NS} {(\hat{{\rho }}_{j} )^{{v}^{\prime\prime}_{j} }} } \right)} $$
(A-1)

Defining an L2 norm of the ‘positive’ source-term vector as \(\left \| {\dot {{\omega }}^{+}} \right \|\equiv (\sum \limits _{s} {\dot {{\omega }}_{s}^{+} \dot {{\omega }}_{s}^{+} } )^{1/2}\) and utilizing the same data fields as in Fig. 3 (qevolved, coarse, qfiltered, fine, qfiltered, coarse), one obtains scatter plots of the form shown in Fig. 33.

Fig. 33
figure 33

Scatter plots of ‘positive’ source-term norms (see text for descriptions of components of the figure

The first thing to note is that the degree of correlation is generally higher than evidenced in Fig. 3 for the net production rates. The left-most component of Fig. 33 compares directly with the left-most component of Fig. 3 and shows a similar degree of correlation between filtered-fine-mesh source terms and source terms evaluated using evolved coarse-mesh data. A clear trend toward diminishing reactivity due to the effects of unresolved information is apparent—this is the situation that the LSM models try to improve upon. The center component represents the results from a classical a priori analysis applied to the ‘positive’ source terms and is comparable to the same component in Fig. 3—both figures use fine-mesh data exclusively. The difference in the degree of correlation is striking, illustrating the point that classical a priori analysis as applied to the chemical production rates fails not because of nonlinearities in the reaction rates themselves but in the disruption of the balance between chemical production and depletion components. The right-most component of the figure utilizes only evolved coarse-mesh data and thus compares directly with the right-most component of Fig. 3. A greatly increased degree of correlation is evidenced, relative to Fig. 3. This again illustrates the balance-disruption effect that is present when the net production rates are considered. We noticed these trends early in our studies and developed some LSM-like models that used the positive components of the source terms. These models were highly effective in correlating the responses of the positive components across mesh levels in a priori testing but failed to provide a significant benefit when applied to the net production terms, both in a priori and in a posteriori settings [29, 30].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patton, C.H., Edwards, J.R. Least Squares Minimization Closure Models for LES of Turbulent Combustion. Flow Turbulence Combust 102, 699–733 (2019). https://doi.org/10.1007/s10494-018-9968-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-018-9968-5

Keywords

Navigation