Skip to main content
Log in

Synthetic Freestream Disturbance for the Numerical Reproduction of Experimental Zero-Pressure-Gradient Bypass Transition Test Cases

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The present work introduces a means of forcing bypass transition within a zero-pressure-gradient smooth flat-plate boundary layer (ZPGSFPBL), suitable for DNS or LES computations for reproducing experimental datasets. In this type of bypass transition, one of the means of forcing transition within the boundary layer is via the introduction of a specific disturbance along the inflow boundary. Following this principle, the current method, introduces synthetic turbulence, generated by the method of Klein et al. (J. Comput. Phys. 186(2), 652–665, 2003), at the inflow, a certain height above the boundary layer, thereby confining it within the freestream. The principle parameter which dictates the transition behaviour is the height above the boundary layer at which the freestream turbulence is injected. By adjusting this parameter, as well as the integral length-scale and the intensity (either estimated or known a priori from experiments), ILES computations providing good agreement with experimental data sets can be achieved upon a variety of grids. This procedure has been validated upon the ERCOFTAC T3A experimental test case (freestream turbulent intensity of 3%), where good matching is achieved on streamwise quantities like skin-friction coefficient, shape factor, boundary layer thickness and fluctuating velocity growth rates as well as for profiles of mean velocity and fluctuating velocities in the wall-normal direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Andersson, P., Berggren, M., Henningson, D.S.: Optimal disturbances and bypass transition in boundary layers. Phys. Fluids 11(1), 134–150 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brandt, L., Schlatter, P., Henningson, D.S.: Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech. 517, 167–198 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Calo, V.M.: Residual-Based Multiscale Turbulence Modeling: Finite Volume Simulations of Bypass Transition. Ph.D. thesis, Stanford University, USA (2004)

  5. Chapelier, J.B., Lodato, G., Jameson, A.: A study on the numerical dissipation of the spectral difference method for freely decaying and wall-bounded turbulence. Comput. Fluids 139, 261–280 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Coull, J.D., Hodson, H.P.: Unsteady boundary-layer transition in low-pressure turbines. J. Fluid Mech. 681, 370–410 (2011)

    Article  MATH  Google Scholar 

  7. Ducros, F., Comte, P., Lesieur, M.: Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate. J. Fluid Mech. 326, 1–36 (1996)

    Article  MATH  Google Scholar 

  8. Fransson, J.H., Matsubara, M., Alfredsson, P.H.: Transition induced by free-stream turbulence. J. Fluid Mech. 527, 1–25 (2005)

    Article  MATH  Google Scholar 

  9. Grosch, C.E., Salwen, H.: The continuous spectrum of the Orr-Sommerfeld equation. part 1. the spectrum and the eigenfunctions. J. Fluid Mech. 87(1), 33–54 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  10. Harten, A., Hyman, J.M.: Self adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys. 50(2), 235–269 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jacobs, R.G., Durbin, P.A.: Shear sheltering and the continuous spectrum of the Orr-Sommerfeld equation. Phys. Fluids 10(8), 2006–2011 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jacobs, R., Durbin, P.: Simulations of bypass transition. J. Fluid Mech. 428, 185–212 (2001)

    Article  MATH  Google Scholar 

  13. Jameson, A.: A proof of the stability of the spectral difference method for all orders of accuracy. J. Sci. Comput. 45(1-3), 348–358 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Johnson, M.W., Ercan, A.H.: A physical model for bypass transition. Int. J. Heat Fluid Flow 20(2), 95–104 (1999)

    Article  Google Scholar 

  15. Jonáš, P., Mazur, O., Uruba, V.: On the receptivity of the by-pass transition to the length scale of the outer stream turbulence. Eur. J. Mech.-B/Fluids 19(5), 707–722 (2000)

    Article  MATH  Google Scholar 

  16. Kempf, A., Wysocki, S., Pettit, M.: An efficient, parallel low-storage implementation of Klein’s turbulence generator for LES and DNS. Comput. Fluids 60, 58–60 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ketterl, S., Klein, M.: A band-width filtered forcing based generation of turbulent inflow data for direct numerical or large eddy simulations and its application to primary breakup of liquid jets. Flow Turbul. Combust. 101(2), 413–432 (2018)

    Article  Google Scholar 

  18. Klebanoff, P.: Effect of Free-Stream Turbulence on a Laminar Boundary Layer. Bullet. Amer. Phys. Soc. 16(11), 1323–+ (1971). Amer Inst Physics 1305 Walt Whitman Rd, Ste 300, Melville, NY 11747-4501 USA

    Google Scholar 

  19. Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186(2), 652–665 (2003)

    Article  MATH  Google Scholar 

  20. Kopriva, D.A.: A conservative staggered-grid Chebyshev multidomain method for compressible flows. II. A semi-structured method. J. Comput. Phys. 128(2), 475–488 (1996)

    Article  MATH  Google Scholar 

  21. Kopriva, D.A., Kolias, J.H.: A conservative staggered-grid Chebyshev multidomain method for compressible flows. J. Comput. Phys. 125(1), 244–261 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lardeau, S., Leschziner, M., Zaki, T.: Large eddy simulation of transitional separated flow over a flat plate and a compressor blade. Flow Turbul. Combust. 88 (1-2), 19–44 (2012)

    Article  MATH  Google Scholar 

  23. Liu, Y., Vinokur, M., Wang, Z.: Spectral difference method for unstructured grids i: basic formulation. J. Comput. Phys. 216(2), 780–801 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lund, T.S., Wu, X., Squires, K.D.: Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140(2), 233–258 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Matsubara, M., Alfredsson, P.H.: Disturbance growth in boundary layers subjected to free-stream turbulence. J. Fluid Mech. 430, 149–168 (2001)

    Article  MATH  Google Scholar 

  26. Morkovin, M.V.: Bypass transition to turbulence and research desiderata. Tech. report, Illinois Inst. of Tech., Chicago (1985)

    Google Scholar 

  27. Nagarajan, S., Lele, S., Ferziger, J.: Leading-edge effects in bypass transition. J. Fluid Mech. 572, 471–504 (2007)

    Article  MATH  Google Scholar 

  28. Ovchinnikov, V., Choudhari, M.M., Piomelli, U.: Numerical simulations of boundary-layer bypass transition due to high-amplitude free-stream turbulence. J. Fluid Mech. 613, 135–169 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pinto, B., Lodato, G.: Large-eddy simulation of bypass transition using the spectral-element dynamic model. Flow, turbulence and combustion. In preparation (2018)

  30. Rai, M.M., Moin, P.: Direct numerical simulation of transition and turbulence in a spatially evolving boundary layer. J. Comput. Phys. 109(2), 169–192 (1993)

    Article  MATH  Google Scholar 

  31. Rao, V.N., Tucker, P., Jefferson-Loveday, R., Coull, J.: Large eddy simulations in low-pressure turbines: effect of wakes at elevated free-stream turbulence. Int. J. Heat Fluid Flow 43, 85–95 (2013)

    Article  Google Scholar 

  32. Roach, P., Brierley, D.: The influence of a turbulent freestream on zero pressure gradient transitional boundary layer developement including the condition test cases T3A and T3B (1992)

  33. Roe, P.L.: Approximate riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rogallo, R.S.: Numerical experiments in homogeneous turbulence. Tech. report, NASA Ames Research Center, Moffett Field (1981)

    Google Scholar 

  35. Schubauer, G.B., Skramstad, H.K.: Laminar-boundary-layer oscillations and transition on a flat plate. Tech. report, National Aeronautics and Space Administration, Washington (1948)

    Google Scholar 

  36. Shahbazi, K.: An explicit expression for the penalty parameter of the interior penalty method. J. Comput. Phys. 205(2), 401–407 (2005)

    Article  MATH  Google Scholar 

  37. Sun, Y., Wang, Z.J., Liu, Y.: High-order multidomain spectral difference method for the Navier-Stokes equations on unstructured hexahedral grids. Commun. Comput. Phys. 2(2), 310–333 (2007)

    MathSciNet  MATH  Google Scholar 

  38. Tomkins, C.D., Adrian, R.J.: Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 37–74 (2003)

    Article  MATH  Google Scholar 

  39. Voke, P.R., Yang, Z.: Numerical study of bypass transition. Phys. Fluids 7 (9), 2256–2264 (1995)

    Article  MATH  Google Scholar 

  40. Wang, Z., Liu, Y., May, G., Jameson, A.: Spectral difference method for unstructured grids II: extension to the euler equations. J. Sci. Comput. 32(1), 45–71 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wissink, J., Rodi, W.: DNS of a Laminar Separation Bubble Affected by Free-Stream Disturbances. In: Direct and Large-Eddy Simulation V, pp. 213–220. Springer (2004)

  42. Wu, X.: Inflow turbulence generation methods. Annu. Rev. Fluid Mech. 49, 23–49 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wu, X., Moin, P.: Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech. 630, 5–41 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Xu, Z., Zhao, Q., Lin, Q., Xu, J.: Large eddy simulation on the effect of free-stream turbulence on bypass transition. Int. J. Heat Fluid Flow 54, 131–142 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The use of the SD solver originally developed by Antony Jameson’s group at Stanford University is gratefully acknowledged. This work was granted access to the HPC resources of IDRIS-CNRS under the allocation i2016-2a7361 made by GENCI (Grand Equipement National de Calcul Intensif). The Haute Normandie Computing center CRIANN is also acknowledged.

Funding

Financial support to the first author was provided within the framework of the BIOENGINE Project through the European Funds of Regional Development (FEDER) under grant number HN0002485. Financial support to the second author was provided by ANR under grant number ANR-14-CE05-0029 and FRAE under grant number 14-CE05-0029-FN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brijesh Pinto.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinto, B., Lodato, G. Synthetic Freestream Disturbance for the Numerical Reproduction of Experimental Zero-Pressure-Gradient Bypass Transition Test Cases. Flow Turbulence Combust 103, 25–54 (2019). https://doi.org/10.1007/s10494-018-0004-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-018-0004-6

Keywords

Navigation